首页> 外文期刊>Neurocomputing >Boosting regression methods based on a geometric conversion approach:Using SVMs base learners
【24h】

Boosting regression methods based on a geometric conversion approach:Using SVMs base learners

机译:提高基于几何转换方法的回归方法:使用SVM基础学习者

获取原文
获取原文并翻译 | 示例

摘要

Boosting is one of the most important developments in ensemble learning during the past decade. Among different types of boosting methods, AdaBoost is the earliest and the most prevailing one that receives lots of attention for its effectiveness and practicality. Hitherto the research on boosting is dominated by classification problems. Conversely, the extension of boosting to regression is not as successful as that on classification. In this paper, we propose a new approach to extending boosting to regression. This approach first converts a regression sample to a binary classification sample from a geometric point of view, and performs AdaBoost with support vector machines base learner on the converted classification sample. Then the separating hypersurface ensemble obtained from AdaBoost is equivalent to a regression function for the original regression sample. Based on this approach, two new boosting regression methods are presented. The first method adopts the explicit geometric conversion while the second method adopts the implicit geometric conversion. Since both these methods essentially run on the binary classification samples, the convergence property of the standard AdaBoost still holds for them. Experimental results validate the effectiveness of the proposed methods.
机译:提升是过去十年中集成学习中最重要的发展之一。在不同类型的加强方法中,AdaBoost是最早,最流行的一种,因其有效性和实用性而受到广泛关注。迄今为止,关于提升的研究主要是分类问题。相反,将增强推广到回归的扩展不如分类推广那么成功。在本文中,我们提出了一种将提升扩展到回归的新方法。此方法首先从几何角度将回归样本转换为二进制分类样本,然后基于转换后的分类样本在支持向量机的基础上执行AdaBoost。然后,从AdaBoost获得的分离的超曲面合奏等效于原始回归样本的回归函数。基于这种方法,提出了两种新的增强回归方法。第一种方法采用显式几何转换,而第二种方法采用隐式几何转换。由于这两种方法本质上都在二进制分类样本上运行,因此标准AdaBoost的收敛性仍然适用于它们。实验结果验证了所提方法的有效性。

著录项

  • 来源
    《Neurocomputing》 |2013年第3期|67-87|共21页
  • 作者单位

    SKLMS, MOE KLINNS, Systems Engineering Institute, Xi'an Jiaotong University, Xi'an 710049, PR China;

    SKLMS, MOE KLINNS, Systems Engineering Institute, Xi'an Jiaotong University, Xi'an 710049, PR China;

    SKLMS, MOE KLINNS, Systems Engineering Institute, Xi'an Jiaotong University, Xi'an 710049, PR China;

    SKLMS, MOE KLINNS, Systems Engineering Institute, Xi'an Jiaotong University, Xi'an 710049, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    boosting; ensemble learning; regression; support vector machines; support vector regression;

    机译:促进;整体学习;回归;支持向量机;支持向量回归;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号