首页> 外文期刊>Expert Systems with Application >Incorporating rich features to boost information retrieval performance: A SVM-regression based re-ranking approach
【24h】

Incorporating rich features to boost information retrieval performance: A SVM-regression based re-ranking approach

机译:整合丰富的功能以提高信息检索性能:基于SVM回归的重新排序方法

获取原文
获取原文并翻译 | 示例

摘要

Document ranking is an essential problem in the field of information retrieval (IR). Traditional weighting models such as BM25 and Language model can only take advantage of query terms. IR is a complex process that may be affected by a series of heterogeneous features. It is necessary to refine first-pass retrieval results by taking rich features into account. Traditional heuristic re-ranking approaches can only take advantage of a small number of homogeneous features that may affect information retrieval performance. In this paper, we propose and evaluate a regression-based document re-ranking approach for IR, in which we use SVM regression model to learn a re-ranking function automatically. Under this regression-based framework, we can take advantage of rich features to re-rank the firs-pass retrieved documents by traditional weighting models. We conduct a series of experiments on four standard IR collections in two different languages. The experimental results show that our proposed approach can significantly improve the retrieval performance over the first-pass retrieval. Moreover, by refining the first-pass retrieved document set, the traditional pseudo relevant feedback approaches can also be enhanced. Crown Copyright (c) 2010 Published by Elsevier Ltd. All rights reserved.
机译:文档排名是信息检索(IR)领域中的一个基本问题。传统的加权模型(例如BM25和语言模型)只能利用查询字词。 IR是一个复杂的过程,可能会受到一系列异类特征的影响。有必要通过考虑丰富的功能来完善首过检索结果。传统的启发式重新排序方法只能利用少数可能影响信息检索性能的同类特征。在本文中,我们提出并评估了一种用于IR的基于回归的文档重新排名方法,其中我们使用SVM回归模型来自动学习重新排名功能。在这种基于回归的框架下,我们可以利用丰富的功能通过传统的加权模型对首次通过检索的文档进行重新排序。我们对使用两种不同语言的四个标准IR集合进行了一系列实验。实验结果表明,我们提出的方法可以显着提高首过检索的检索性能。此外,通过完善首过检索的文档集,还可以增强传统的伪相关反馈方法。 Crown版权所有(c)2010,由Elsevier Ltd.发行。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号