首页> 外文期刊>Neurocomputing >Model-based functional mixture discriminant analysis with hidden process regression for curve classification
【24h】

Model-based functional mixture discriminant analysis with hidden process regression for curve classification

机译:基于模型的功能混合判别分析和隐藏过程回归的曲线分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the modeling and the classification of functional data presenting regime changes over time. We propose a new model-based functional mixture discriminant analysis approach based on a specific hidden process regression model that governs the regime changes over time. Our approach is particularly adapted to handle the problem of complex-shaped classes of curves, where each class is potentially composed of several sub-classes, and to deal with the regime changes within each homogeneous sub-class. The proposed model explicitly integrates the heterogeneity of each class of curves via a mixture model formulation, and the regime changes within each sub-class through a hidden logistic process. Each class of complex-shaped curves is modeled by a finite number of homogeneous clusters, each of them being decomposed into several regimes. The model parameters of each class are learned by maximizing the observed-data log-likelihood by using a dedicated expectation-maximization (EM) algorithm. Comparisons are performed with alternative curve classification approaches, including functional linear discriminant analysis and functional mixture discriminant analysis with polynomial regression mixtures and spline regression mixtures. Results obtained on simulated data and real data show that the proposed approach outperforms the alternative approaches in terms of discrimination, and significantly improves the curves approximation.
机译:在本文中,我们研究功能数据的建模和分类,这些数据表示制度随时间的变化。我们提出了一种新的基于模型的功能混合判别分析方法,该方法基于特定的隐藏过程回归模型来控制制度随时间的变化。我们的方法特别适合处理复杂形状的曲线类的问题,其中每个类可能由几个子类组成,并处理每个同质子类中的状态变化。所提出的模型通过混合模型公式明确地集成了每类曲线的异质性,并且通过隐藏的逻辑过程在每个子类中的状态变化。每类复杂形状的曲线都由有限数量的均质簇建模,它们中的每一个都分解为几种状态。通过使用专用的期望最大化(EM)算法来最大化观察数据的对数似然性,可以学习每个类别的模型参数。使用其他曲线分类方法进行比较,包括函数线性判别分析和函数混合判别分析以及多项式回归混合和样条回归混合。在模拟数据和真实数据上获得的结果表明,所提出的方法在识别方面优于其他方法,并显着提高了曲线逼近度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号