首页> 外文期刊>Neurocomputing >Transferring task models in Reinforcement Learning agents
【24h】

Transferring task models in Reinforcement Learning agents

机译:在强化学习代理中传输任务模型

获取原文
获取原文并翻译 | 示例

摘要

The main objective of transfer learning is to reuse knowledge acquired in a previous learned task, in order to enhance the learning procedure in a new and more complex task. Transfer learning comprises a suitable solution for speeding up the learning procedure in Reinforcement Learning tasks. This work proposes a novel method for transferring models to Reinforcement Learning agents. The models of the transition and reward functions of a source task, will be transferred to a relevant but different target task. The learning algorithm of the target task's agent takes a hybrid approach, implementing both model-free and model-based learning, in order to fully exploit the presence of a source task model. Moreover, a novel method is proposed for transferring models of potential-based reward shaping functions. The empirical evaluation, of the proposed approaches, demonstrated significant results and performance improvements in the 3D Mountain Car and Server Job Scheduling tasks, by successfully using the models generated from their corresponding source tasks.
机译:迁移学习的主要目标是重用在先前学习的任务中获得的知识,以增强新的,更复杂的任务中的学习过程。转移学习包括一种用于加快强化学习任务中学习过程的合适解决方案。这项工作提出了一种将模型转移到强化学习代理的新颖方法。源任务的过渡和奖励功能模型将转移到相关但不同的目标任务。目标任务代理的学习算法采用混合方法,同时实现无模型学习和基于模型的学习,以便充分利用源任务模型的存在。此外,提出了一种新的方法来转移基于势的奖励塑造函数的模型。通过成功使用从其相应的源任务生成的模型,对提出的方法进行的经验评估证明了3D Mountain Car和Server Job Scheduling任务中的显着结果和性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号