首页> 外文期刊>Neurocomputing >Lip segmentation and tracking under MAP-MRF framework with unknown segment number
【24h】

Lip segmentation and tracking under MAP-MRF framework with unknown segment number

机译:未知片段编号的MAP-MRF框架下的嘴唇分割和跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a color lip segmentation method with unknown true segment number. Firstly, we build up a multi-layer hierarchical model, in which each layer corresponds to one segment cluster. Subsequently, a Markov random field derived from this model is obtained such that the segmentation problem is formulated as a labeling optimization problem under the maximum a posteriori Markov random field (MAP-MRF) framework. Suppose the pre-assigned number of segment clusters may overestimate the ground truth, whereby leading to the over-segmentation. We present a rival penalized iterative algorithm capable of performing segment clusters and over-segmentation elimination simultaneously. Based upon this algorithm, we propose a lip segmentation and tracking scheme, featuring the robust performance to the estimate of the number of segment clusters. Experimental results show the efficacy of the proposed method in comparison with the existing counterparts.
机译:提出了一种具有未知真实分割数的彩色嘴唇分割方法。首先,我们建立了一个多层的层次模型,其中每一层都对应一个片段簇。随后,获得从该模型导出的马尔可夫随机场,从而将分割问题公式化为最大后验马尔可夫随机场(MAP-MRF)框架下的标记优化问题。假设段簇的预先指定数量可能高估了基本事实,从而导致了过度分割。我们提出了一种竞争对手的惩罚迭代算法,该算法能够同时执行段聚类和超段消除。基于该算法,我们提出了一种嘴唇分割和跟踪方案,其特征在于对段聚类数目的估计具有鲁棒的性能。实验结果表明,与现有方法相比,该方法的有效性。

著录项

  • 来源
    《Neurocomputing》 |2013年第15期|155-169|共15页
  • 作者单位

    Department of Computer Science, Hong Kong Baptist University, Hong Kong, China;

    Department of Computer Science, Hong Kong Baptist University, Hong Kong, China;

    State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    color lip segmentation; hierarchical model; MAP-MRF framework; segment number;

    机译:彩色嘴唇分割层次模型MAP-MRF框架;段号;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号