首页> 外文期刊>Neurocomputing >Semantic similarity method for keyword query system on RDF
【24h】

Semantic similarity method for keyword query system on RDF

机译:RDF关键字查询系统的语义相似度方法

获取原文
获取原文并翻译 | 示例

摘要

Keyword query on RDF data is an effective option because it is lightweight and it is not necessary to have prior knowledge on the data schema or a formal query language such as SPARQL. However, optimizing the query processing to produce the most relevant results with only minimum computations is a challenging research issue. Current proposals suffer from several drawbacks, e.g., limited scalability, tight coupling with the existing ontology, and too many computations. To address these problems, we propose a novel approach to keyword search with automatic depth decisions using the relational and semantic similarities. Our approach uses a predicate that represents the semantic relationship between the subject and object. We take advantage of this to narrow down the target RDF data. The semantic similarity score is then calculated for objects with the same predicate. We make a linear combination of two scores to get the similarity score that is used to determine the depth of given keyword query results. We evaluate our algorithm with other approaches in terms of accuracy and query processing performance. The results of our empirical experiments show that our approach outperforms other existing approaches in terms of efficiency and query processing performance.
机译:RDF数据上的关键字查询是一种有效的选择,因为它是轻量级的,并且不必事先了解数据模式或诸如SPARQL之类的形式查询语言。但是,优化查询处理以仅用最少的计算即可产生最相关的结果是一个具有挑战性的研究问题。当前的提议遭受若干缺点,例如,可伸缩性有限,与现有本体的紧密耦合以及太多的计算。为了解决这些问题,我们提出了一种新颖的方法,利用关系和语义的相似性,通过自动深度决策来进行关键词搜索。我们的方法使用一个表示主语和宾语之间语义关系的谓词。我们利用这一点来缩小目标RDF数据的范围。然后为具有相同谓词的对象计算语义相似性分数。我们将两个分数进行线性组合以获得相似度分数,该相似度分数用于确定给定关键字查询结果的深度。我们在准确性和查询处理性能方面用其他方法评估我们的算法。我们的经验实验结果表明,在效率和查询处理性能方面,我们的方法优于其他现有方法。

著录项

  • 来源
    《Neurocomputing》 |2014年第25期|264-275|共12页
  • 作者单位

    Department of Computer Engineering, Ajou University, Suwon, Republic of Korea;

    Department of Computer and Information Engineering, Inha University, Incheon, Republic of Korea;

    Department of Computer Engineering, Ajou University, Suwon, Republic of Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Keyword query; RDF; Semantic similarity; WordNet;

    机译:关键字查询;RDF;语义相似度;词网;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号