首页> 外文期刊>Neurocomputing >Clustering and retrieval of video shots based on natural stimulus fMRI
【24h】

Clustering and retrieval of video shots based on natural stimulus fMRI

机译:基于自然刺激功能磁共振成像的视频镜头聚类和检索

获取原文
获取原文并翻译 | 示例

摘要

Functional magnetic resonance imaging (fMRI) is a powerful tool to probe the human brain's perception and cognition. Besides being extensively exploited in the clinical applications, fMRI technique is also useful to human's ordinary life. In this paper, we investigate a novel application of leveraging fMRI techniques to video clustering and retrieval. In the proposed work, we successfully integrate semantic human-centric features derived from natural stimulus fMRI data and low-level visual-audio features to facilitate video clustering and retrieval, which is a significant innovation compared to the previous works relying on either fMRI-derived features or low-level visual-audio features. Our system consists of several algorithmic modules. First, fMRI data when the subjects are watching video shot samples are acquired. Then a newly developed brain networks localization system is employed to locate the cortical regions of interests (ROIs) for each individual subject. The functional interactions computed by wavelet transform coherence are quantified, from which the human-centric features are derived. Afterwards, the Gaussian process regression model mapping visual-audio feature space to an fMRI-derived feature space is trained, given the training samples. The trained model is then adopted to predict fMRI-derived features for videos without the fMRI data. Finally, the multi-modal spectral clustering and multi-modal ranking algorithm are adopted and proposed to integrate these two heterogeneous features for video clustering and retrieval, respectively. Our experiment on TRECVID database has demonstrated the precision of video clustering and retrieval can be substantially improved by integration of visual-audio features and fMRI-derived features.
机译:功能磁共振成像(fMRI)是探测人脑感知和认知的强大工具。功能磁共振成像技术除在临床上得到广泛应用外,还对人类的日常生活有用。在本文中,我们研究了利用fMRI技术在视频聚类和检索中的新型应用。在拟议的工作中,我们成功地整合了从自然刺激功能磁共振成像数据中获取的以人为中心的语义特征和低级视听音频特征,以促进视频聚类和检索,与以往的依赖于功能磁共振成像的作品相比,这是一项重大创新功能或低级别的视听功能。我们的系统由几个算法模块组成。首先,获取对象观看视频样本时的fMRI数据。然后,采用新开发的脑网络定位系统为每个个体对象定位感兴趣的皮质区域(ROI)。量化由小波变换相干计算出的功能相互作用,从中得出以人为中心的特征。然后,给定训练样本,训练将视音频特征空间映射到fMRI衍生的特征空间的高斯过程回归模型。然后,采用训练有素的模型来预测没有fMRI数据的视频的fMRI衍生特征。最后,采用并提出了多模态频谱聚类和多模态排序算法,分别将这两种异构特征进行视频聚类和检索。我们在TRECVID数据库上进行的实验表明,通过整合视音频功能和fMRI衍生的功能,可以大大提高视频聚类和检索的精度。

著录项

  • 来源
    《Neurocomputing》 |2014年第20期|128-137|共10页
  • 作者单位

    School of Automation, Northwestern Polytechnical University, Xi'an 710072, China;

    School of Automation, Northwestern Polytechnical University, Xi'an 710072, China;

    School of Automation, Northwestern Polytechnical University, Xi'an 710072, China;

    Civolution Technology, Eindhoven, The Netherlands;

    Department of Computer Science and Bioimaging Research Center, The University of Georgia, Boyd 420, Athens, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Video clustering; Video retrieval; Functional magnetic resonance imaging; Feature integration;

    机译:视频聚类;视频检索;功能磁共振成像;功能整合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号