首页> 外文期刊>Neurocomputing >A fast blind source separation algorithm based on the temporal structure of signals
【24h】

A fast blind source separation algorithm based on the temporal structure of signals

机译:基于信号时间结构的快速盲源分离算法

获取原文
获取原文并翻译 | 示例

摘要

Classical independent component analysis (ICA) has been reasonably successful; however, the performance and the convergence of the conventional ICA algorithms have reached limitations of further improvement since they utilize only the statistical independency among the sources. For circumventing this situation, in this paper, we incorporate some other kinds of temporal priori information, i.e., the generalized autocorrelation and the nonlinear predictability of each source, and make a convex combination of them to formulate a novel cost function for blind source separation (BSS). With this cost function, a fixed-point BSS algorithm is developed. This algorithm inherits the advantages of the well-known FastlCA algorithm of ICA, which converges fast and does not need to choose any learning step sizes. Its higher separation accuracy is verified by numerical experiments. Meanwhile, we also give the consistency analysis and prove convergence properties of the algorithm, which has a (locally) consistent estimator and at least quadratic convergence.
机译:经典的独立成分分析(ICA)已相当成功;然而,由于传统的ICA算法仅利用了源之间的统计独立性,因此其性能和收敛性已达到进一步改进的局限。为了避免这种情况,在本文中,我们结合了其他一些时间先验信息,即每个源的广义自相关和非线性可预测性,并对其进行凸组合以形成用于盲源分离的新型成本函数( BSS)。利用该成本函数,开发了定点BSS算法。该算法继承了ICA的FastlCA算法的优点,该算法收敛速度快,不需要选择任何学习步长。数值实验证明了其较高的分离精度。同时,我们还给出了一致性分析并证明了算法的收敛性,该算法具有一个(局部)一致的估计量,并且至少具有二次收敛性。

著录项

  • 来源
    《Neurocomputing》 |2014年第2期|261-271|共11页
  • 作者单位

    Department of Mathematics, Shanghai University, Shanghai 200444, PR China;

    Department of Mathematics, Shanghai University, Shanghai 200444, PR China;

    Department of Mathematics, Shanghai University, Shanghai 200444, PR China;

    Business School, University of Shanghai for Science and Technology, Shanghai 200093, PR China;

    School of Computer Science and Engineering, The University of Aizu, Tsuruga, Ikki-Machi, Aizu-Wakamatsu City, Fukushima 965-8580, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Blind sources separation; Nonlinear autocorrelation; Nonlinear predictability; Fixed-point algorithm;

    机译:盲源分离;非线性自相关;非线性可预测性;定点算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号