首页> 外文期刊>Neurocomputing >Attribute relation learning for zero-shot classification
【24h】

Attribute relation learning for zero-shot classification

机译:零镜头分类的属性关系学习

获取原文
获取原文并翻译 | 示例

摘要

In computer vision and pattern recognition communities, one often-encountered problem is that the limited labeled training data are not enough to cover all the classes, which is also called the zero-shot learning problem. For addressing that challenging problem, some visual and semantic attributes are usually used as mid-level representation to transfer knowledge from training classes to unseen test ones. Recently, several studies have investigated to exploit the relation between attributes to aid the attribute-based learning methods. However, such attribute relation is commonly predefined by means of external linguistic knowledge bases, preprocessed in advance of the learning of attribute classifiers. In this paper, we propose a unified framework that learns the attribute-attribute relation and the attribute classifiers jointly to boost the performances of attribute predictors. Specifically, we unify the attribute relation learning and the attribute classifier design into a common objective function, through which we can not only predict attributes, but also automatically discover the relation between attributes from data. Furthermore, based on the afore-learnt attribute relation and classifiers, we develop two types of learning schemes for zero-shot classification. Experimental results on a series of real benchmark data sets suggest that mining the relation between attributes do enhance the performances of attribute prediction and zero-shot classification, compared with state-of-the-art methods.
机译:在计算机视觉和模式识别社区中,一个经常遇到的问题是有限的标记训练数据不足以覆盖所有类别,这也称为零击学习问题。为了解决这一具有挑战性的问题,通常将一些视觉和语义属性用作中间级表示,以将知识从培训课程转移到看不见的测试课程。近来,已经进行了一些研究以利用属性之间的关系来辅助基于属性的学习方法。但是,这种属性关系通常是通过外部语言知识库预先定义的,这些语言知识库是在学习属性分类器之前进行预处理的。在本文中,我们提出了一个统一的框架,该框架可以共同学习属性-属性关系和属性分类器,以提高属性预测器的性能。具体来说,我们将属性关系学习和属性分类器设计统一为一个通用目标函数,通过该函数不仅可以预测属性,还可以从数据中自动发现属性之间的关系。此外,基于先前学习的属性关系和分类器,我们开发了两种用于零镜头分类的学习方案。在一系列实际基准数据集上的实验结果表明,与最新方法相比,挖掘属性之间的关系确实增强了属性预测和零击分类的性能。

著录项

  • 来源
    《Neurocomputing》 |2014年第2期|34-46|共13页
  • 作者单位

    School of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China,School of Information Science and Technology, Taishan University, Taian 271021, China;

    School of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;

    School of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Attribute; Attribute relation; Zero-shot learning; Classification;

    机译:属性;属性关系;零镜头学习;分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号