首页> 外文期刊>Neurocomputing >Robust visual tracking via incremental low-rank features learning
【24h】

Robust visual tracking via incremental low-rank features learning

机译:通过增量低阶特征学习进行可靠的视觉跟踪

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address robust visual tracking as an incremental low-rank features learning problem in a particle filter framework. Our new algorithm first learns the observation model by extracting low-rank features and the corresponding subspace basis of the object from the initial several frames. Then the low-rank features and sparse errors can be incrementally updated using an l_1 norm minimization model. We show that the proposed strategy is actually an online extension of Robust PCA (RPCA). Thus compared with previous methods, which directly learn subspace from corrupted observations, our model can incrementally pursuit the low-rank features for the target and detect the occlusions by the sparse errors. Furthermore, the proposed reformulation of RPCA can also be considered as an illumination study on extending batch-mode low-rank techniques for more general online time series analysis tasks. Experimental results on various challenging videos validate the superiority over other state-of-the-art methods.
机译:在本文中,我们将稳健的视觉跟踪作为粒子过滤器框架中增量式低阶特征学习问题来解决。我们的新算法首先通过从初始的几帧中提取对象的低秩特征和相应的子空间基础来学习观察模型。然后,可以使用l_1范数最小化模型来逐步更新低秩特征和稀疏错误。我们表明,提出的策略实际上是Robust PCA(RPCA)的在线扩展。因此,与以前的方法(可以直接从损坏的观测值中直接学习子空间)相比,我们的模型可以逐步跟踪目标的低秩特征,并通过稀疏错误检测遮挡。此外,建议的RPCA格式也可以看作是扩展批处理模式低秩技术的照明研究,用于更一般的在线时间序列分析任务。各种具有挑战性的视频的实验结果证明了其相对于其他最新技术的优越性。

著录项

  • 来源
    《Neurocomputing》 |2014年第5期|237-247|共11页
  • 作者单位

    School of Mathematical Sciences, Dalian University of Technology, Dalian, China;

    Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China;

    Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China;

    School of Mathematical Sciences, Dalian University of Technology, Dalian, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Low-rank features; Visual tracking; Incremental subspace learning; Occlusion detection;

    机译:低等级功能;视觉跟踪;增量子空间学习;遮挡检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号