首页> 外文期刊>Neurocomputing >Predicting pupylation sites in prokaryotic proteins using pseudo-amino acid composition and extreme learning machine
【24h】

Predicting pupylation sites in prokaryotic proteins using pseudo-amino acid composition and extreme learning machine

机译:使用伪氨基酸组成和极限学习机预测原核蛋白中的pupylation位点

获取原文
获取原文并翻译 | 示例

摘要

Pupylation is one of the most important post-translational modifications of prokaryotic proteins playing a key role in regulating a wild range of biological processes. Prokaryotic ubiquitin-like protein can attach to specific lysine residues of substrate proteins by forming isopeptide bonds for the selective degradation of proteins in Mycobacterium tuberculosis. In order to comprehensively understand these pupylation-related biological processes, identification of pupylation sites in the substrate protein sequence is the first step. The traditional wet-lab experimental approaches are both laborious and time-consuming. To timely and effectively discover pupylation sites when facing with the avalanche of new protein sequences emerging during the post-genomic Era, a novel computational predictor called PupS (pupylation site predictor) is proposed. PupS is constructed on the pseudo-amino acid composition and trained with extreme learning machine. The jackknife cross-validation results on the training dataset show that the area under an ROC Curve (AUC) value is 0.6483 by PupS, and an AUC of 0.6779 is obtained on the independent set. Our results also demonstrate that ELM is complementary to other algorithms and that constructing an ensemble classifier will generate better results.
机译:Pupylation是原核蛋白最重要的翻译后修饰之一,在调节野生生物过程中起关键作用。原核泛素样蛋白可以通过形成异肽键附着在底物蛋白的特定赖氨酸残基上,从而选择性降解结核分枝杆菌中的蛋白。为了全面了解这些与pupylation相关的生物学过程,第一步是确定底物蛋白序列中的pupylation位点。传统的湿实验室实验方法既费力又费时。为了及时有效地发现基因组后时代出现的新蛋白质序列雪崩时的脓毒症位点,提出了一种新型的计算预测因子PupS(脓毒症位点预测因子)。 PupS是基于伪氨基酸组成构建的,并使用极限学习机进行训练。训练数据集上的折刀交叉验证结果表明,通过PupS,ROC曲线(AUC)值下的面积为0.6483,在独立集合上获得的AUC为0.6779。我们的结果还证明,ELM是其他算法的补充,构造整体分类器将产生更好的结果。

著录项

  • 来源
    《Neurocomputing》 |2014年第27期|267-272|共6页
  • 作者

    Yong-Xian Fan; Hong-Bin Shen;

  • 作者单位

    Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China,School of Computer Science and Engineering, Guilin University of Electronic Technology, Cuilin 541004, China;

    Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pupylated protein; Pupylation sites; Pseudo-amino acid composition; Extreme learning machine; Bioinformatics; PupS;

    机译:酰化蛋白;脓毒化位点;伪氨基酸组成;极限学习机;生物信息学幼犬;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号