首页> 外文期刊>Neurocomputing >Generative embeddings based on Rician mixtures for kernel-based classification of magnetic resonance images
【24h】

Generative embeddings based on Rician mixtures for kernel-based classification of magnetic resonance images

机译:基于Rician混合的生成嵌入用于基于核的磁共振图像分类

获取原文
获取原文并翻译 | 示例

摘要

Classical approaches to classifier learning for structured objects (such as images or sequences) are based on probabilistic generative models. On the other hand, state-of-the-art classifiers for vectorial data are learned discriminatively. In recent years, these two dual paradigms have been combined via the use of generative embeddings (of which the Fisher kernel is arguably the best known example); these embeddings are mappings from the object space into a fixed dimensional score space, induced by a generative model learned from data, on which a (maybe kernel-based) discriminative approach can then be used. This paper proposes a new semi-parametric approach to build generative embeddings for classification of magnetic resonance images (MRI). Based on the fact that MRI data is well described by Rice distributions, we propose to use Rician mixtures as the underlying generative model, based on which several different generative embeddings are built These embeddings yield vectorial representations on which kernel-based support vector machines (SVM) can be trained for classification. Concerning the choice of kernel, we adopt the recently proposed nonextensive information theoretic kernels. The methodology proposed was tested on a challenging classification task, which consists in classifying MRI images as belonging to schizophrenic or non-schizophrenic human subjects. The classification is based on a set of regions of interest (ROIs) in each image, with the classifiers corresponding to each ROI being combined via AdaBoost. The experimental results show that the proposed methodology outperforms the previous state-of-the-art methods on the same dataset.
机译:用于结构化对象(例如图像或序列)的分类器学习的经典方法基于概率生成模型。另一方面,可区别地学习矢量数据的最新分类器。近年来,通过使用生成嵌入将这两个对偶范式进行了组合(Fisher内核可以说是最著名的例子)。这些嵌入是从对象空间到固定维数分数空间的映射,由从数据中学习的生成模型引起,然后可以在其上使用(可能是基于内核的)判别方法。本文提出了一种新的半参数方法来建立生成嵌入的磁共振图像(MRI)分类。基于Rice分布可以很好地描述MRI数据这一事实,我们建议使用Rician混合物作为基础的生成模型,在此模型的基础上构建几种不同的生成嵌入。这些嵌入产生了基于核的支持向量机(SVM)的矢量表示。 )可以进行分类训练。关于内核的选择,我们采用了最近提出的非扩展信息理论内核。在具有挑战性的分类任务上对提出的方法进行了测试,该任务包括将MRI图像分类为精神分裂症或非精神分裂症人类受试者。分类基于每个图像中的一组感兴趣区域(ROI),与每个ROI对应的分类器通过AdaBoost进行组合。实验结果表明,所提出的方法优于同一数据集上的现有技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号