首页> 外文期刊>Neurocomputing >Efficient methods for learning Bayesian network super-structures
【24h】

Efficient methods for learning Bayesian network super-structures

机译:学习贝叶斯网络超结构的有效方法

获取原文
获取原文并翻译 | 示例

摘要

Learning large Bayesian networks (BN) from data is a challenging problem due to the vastness of the structure space. An effective way to turn this problem affordable is the use of super-structures-SS (undirected graphs that contain the BN skeleton). However, the literature has been lacking of specialized methods for estimating SS. We present here two algorithms intended for such purpose in the hybrid approach of BN structure learning. The first one, called Opt01SS, learns SS using only zero-and-first-order conditional independence (Cl) tests in a way that allows dealing with the presence of approximate-deterministic relationships and inconsistent Cls, commonly found in small samples. The second algorithm, called OptHPC, is a computational optimized version of the recent HPC algorithm (De Morais and Aussem 2010, [17]) that showed an attractive accuracy for SS recovery. Results on various benchmark networks showed that the proposed algorithms achieve a balance between sensitivity and specificity clearly more favorable for the task of SS estimation than several representative state-of-the-art methods. The computational cost was also found to be reasonable, being Opt01SS one of the most competitive among the analyzed algorithms.
机译:由于结构空间的巨大,从数据中学习大型贝叶斯网络(BN)是一个具有挑战性的问题。解决此问题的一种有效方法是使用超结构SS(包含BN骨架的无向图)。但是,文献一直缺乏估计SS的专门方法。我们在这里提出两种用于BN结构学习的混合方法中用于此目的的算法。第一个称为Opt01SS,它仅使用零阶和一阶条件独立性(Cl)测试来学习SS,从而可以处理通常在小样本中发现的近似确定性关系和Cls不一致的情况。第二种算法称为OptHPC,是最新的HPC算法(De Morais和Aussem 2010,[17])的一种计算优化版本,对SS恢复显示出极高的准确性。在各种基准网络上的结果表明,与几种代表性的最新方法相比,所提出的算法显然在SS估计任务上实现了灵敏度和特异性之间的平衡。还发现计算成本是合理的,它是Opt01SS在分析算法中最具竞争力之一。

著录项

  • 来源
    《Neurocomputing》 |2014年第10期|3-12|共10页
  • 作者单位

    Department of Electrical Engineering, Sao Carlos School of Engineering, University of Sao Paulo, Brazil;

    Department of Electrical Engineering, Sao Carlos School of Engineering, University of Sao Paulo, Brazil;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bayesian networks; Structure learning; Super-structure;

    机译:贝叶斯网络;结构学习;上层建筑;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号