首页> 外文期刊>Neurocomputing >Approximate dynamic programming based supplementary reactive power control for DFIG wind farm to enhance power system stability
【24h】

Approximate dynamic programming based supplementary reactive power control for DFIG wind farm to enhance power system stability

机译:基于近似动态编程的DFIG风电场补充无功功率控制,以增强电力系统的稳定性

获取原文
获取原文并翻译 | 示例

摘要

Reactive power control of doubly fed induction generators (DFIGs) has been a heated topic in transient stability control of power systems in recent years. By using a new online supplementary learning control (OSLC) approach based on the theory of approximate dynamic programming (ADP), this paper develops an optimal and adaptive design method for the supplementary reactive power control of DFIGs to improve transient stability of power systems. To augment the reactive power command of the rotor-side converter (RSC), a supplementary controller is designed to reduce voltage sag at the common coupling point during a fault, and to mitigate active power oscillation of the wind farm after a fault. As a result, the transient stability of both DFIGs and the power system is enhanced. For the supplementary controller design, an action dependent cost function is introduced to make the OSLC model-free and completely data-driven. Furthermore, a least-squares based policy iteration algorithm is employed to train the supplementary controller with convergence and stability guarantee. By using such techniques, the supplementary reactive power controller can be trained directly from data measurements, and therefore, can adapt to system or external changes without an explicit offline system identification process. Simulations carried out in Power System Computer Aided Design/ Electro Magnetic Transient in DC System (PSCAD/EMTDC) show that the OSLC based supplementary reactive power controller can significantly improve the transient performance of the wind farm and enhance the transient stability of the power system after sever faults. (C) 2015 Elsevier B.V. All rights reserved.
机译:近年来,双馈感应发电机(DFIG)的无功功率控制已成为电力系统暂态稳定控制中的热门话题。通过使用一种基于近似动态规划(ADP)理论的新型在线补充学习控制(OSLC)方法,本文为DFIG的补充无功功率控制开发了一种最佳的自适应设计方法,以提高电力系统的暂态稳定性。为了增加转子侧变频器(RSC)的无功功率指令,设计了一个辅助控制器,以减少故障期间公共耦合点的电压骤降,并减轻故障后风电场的有功功率振荡。结果,DFIG和电力系统的瞬态稳定性都得到增强。对于辅助控制器设计,引入了与动作有关的成本函数,以使OSLC模型不依赖于数据并且完全由数据驱动。此外,基于最小二乘的策略迭代算法被用来训练具有收敛性和稳定性的辅助控制器。通过使用这样的技术,可以从数据测量中直接训练辅助无功功率控制器,因此,无需明确的离线系统识别过程即可适应系统或外部变化。在电力系统计算机辅助设计/直流系统中的电磁暂态(PSCAD / EMTDC)中进行的仿真表明,基于OSLC的辅助无功功率控制器可以显着改善风电场的暂态性能,并提高电力系统的暂态稳定性。严重故障。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号