首页> 外文期刊>Neurocomputing >On semantic-instructed attention: From video eye-tracking dataset to memory-guided probabilistic saliency model
【24h】

On semantic-instructed attention: From video eye-tracking dataset to memory-guided probabilistic saliency model

机译:关于语义指导的注意力:从视频眼动跟踪数据集到内存引导的概率显着性模型

获取原文
获取原文并翻译 | 示例

摘要

Visual attention influenced by example images and predefined targets are widely studied in both cognitive and computer vision fields. Nevertheless, semantics, known to be related to high-level human perception, have a great influence on top-down attention process. Understanding the impact of semantics on visual attention is beneficial for providing psychological and computational guidance on many real-world applications, e.g., semantic video retrieval. In this paper, we intend to study the mechanisms of attention control and computational modeling of saliency detection for dynamic scenes under semantic-instructed viewing conditions. We start our study by establishing a dataset REMoT, the first video eye-tracking dataset with semantic instructions to our best knowledge. We collect the fixation locations of subjects when they are given four kinds of instructions with different levels of noise. The fixation behavior analysis on REMoT shows that the process of semantic-instructed attention can be explained with long-term memory and short-term memory of human visual system. Inspired by this finding, we propose a memory-guided probabilistic model to exploit the semantic-instructed top-down attention. The experience of attention distribution to similar scenes in long-term memory is simulated by linear mapping of global scene features. An HMM-like conditional probabilistic chain is constructed to model the dynamic fixation patterns among neighboring frames in short-term memory. Then, a generative saliency model is constructed which probabilistically combines the top-down and a bottom-up modules for semantic-instructed saliency detection. We compare our model to state-of-the-art models on REMoT and a widely used dataset RSD. Experimental results show that our model achieves significant improvements not only in predicting visual attention under correct instructions, but also in detecting saliency for free viewing. (C) 2015 Elsevier B.V. All rights reserved.
机译:受示例图像和预定义目标影响的视觉注意力在认知和计算机视觉领域都得到了广泛的研究。然而,已知与高级人类感知有关的语义对自上而下的注意过程有很大的影响。理解语义对视觉注意力的影响有利于在许多现实世界的应用程序中提供心理和计算指导,例如语义视频检索。在本文中,我们打算研究语义指导的观看条件下动态场景的注意力控制和显着性检测的计算模型。我们通过建立数据集REMoT来开始我们的研究,REMOT是第一个视频眼动数据集,其中包含我们所学的语义指令。当给他们四种不同声音水平的指示时,我们会收集对象的注视位置。对REMoT的注视行为分析表明,语义指导的注意过程可以用人类视觉系统的长期记忆和短期记忆来解释。受此发现启发,我们提出了一种以记忆为指导的概率模型,以利用语义指导的自上而下的注意力。通过对全局场景特征进行线性映射,可以模拟长期记忆中注意力分布到相似场景的体验。构造类似于HMM的条件概率链,以对短期记忆中相邻帧之间的动态注视模式进行建模。然后,构建生成显着性模型,该模型将概率自上而下和自下而上的模块进行概率组合,以进行语义指导的显着性检测。我们将模型与REMoT和广泛使用的数据集RSD上的最新模型进行了比较。实验结果表明,我们的模型不仅在正确指示下预测视觉注意力方面,而且在检测自由观看的显着性方面均取得了显着改进。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2015年第30期|917-929|共13页
  • 作者单位

    Beijing Univ Posts & Telecommun, Beijing 100088, Peoples R China;

    Beijing Normal Univ, Dept Psychol, Beijing 100875, Peoples R China;

    Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100088, Peoples R China;

    Beijing Normal Univ, Dept Psychol, Beijing 100875, Peoples R China|Beijing Normal Univ, Sch Psychol, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China;

    Beijing Univ Posts & Telecommun, Beijing 100088, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Semantic-instructed viewing; Eye-tracking; Top-down attention; Memory; Saliency model;

    机译:语义指导的观看;眼睛跟踪;自上而下的注意;记忆;显着性模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号