首页> 外文期刊>Neurocomputing >Stability of bidirectional associative memory neural networks with Markov switching via ergodic method and the law of large numbers
【24h】

Stability of bidirectional associative memory neural networks with Markov switching via ergodic method and the law of large numbers

机译:遍历法马尔可夫切换的双向联想记忆神经网络的稳定性和大数律

获取原文
获取原文并翻译 | 示例

摘要

This paper devotes to stability analysis of continuous time and discrete time bidirectional associative memory (BAM) neural networks whose parameters are randomly varying in a finite state Markov chain sense. Based on the ergodic theory of continuous time Markov chain, the matrix measure approach and Lyapunov theory, almost sure stability and exponential stability in the mean square for continuous time BAM neural networks are derived. We also present some new stability results for discrete time BAM neural networks with the help of the law of large numbers. Meanwhile, some examples with numerical simulations are given to show that the Markov chain plays an important role in stability of neural networks. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文致力于对参数在有限状态马尔可夫链意义上随机变化的连续时间和离散时间双向联想记忆(BAM)神经网络进行稳定性分析。基于连续时间马尔可夫链的遍历理论,矩阵测度方法和李雅普诺夫理论,得出了连续时间BAM神经网络的几乎肯定的均方根稳定性和指数稳定性。在大数定律的帮助下,我们还为离散时间BAM神经网络提供了一些新的稳定性结果。同时,通过数值模拟的例子表明,马尔可夫链在神经网络的稳定性中起着重要的作用。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2015年第30期|1157-1163|共7页
  • 作者

    Pan Lijun; Cao Jinde;

  • 作者单位

    Jia Ying Univ, Sch Math, Meizhou 514015, Guangdong, Peoples R China;

    Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China|King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    BAM neural networks; Markov chain; Ergodic theory; Matrix measure; Law of large numbers;

    机译:BAM神经网络;马尔可夫链;遍历理论;矩阵测度;大数律;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号