首页> 外文期刊>Neurocomputing >Weak fault diagnosis of rotating machinery based on feature reduction with Supervised Orthogonal Local Fisher Discriminant Analysis
【24h】

Weak fault diagnosis of rotating machinery based on feature reduction with Supervised Orthogonal Local Fisher Discriminant Analysis

机译:基于监督正交局部Fisher判别分析的特征约简的旋转机械弱故障诊断

获取原文
获取原文并翻译 | 示例

摘要

A new weak fault diagnosis method based on feature reduction with Supervised Orthogonal Local Fisher Discriminant Analysis (SOLFDA) is proposed. In this method, the Shannon mutual information (SMI) between all samples and training samples is combined into SMI feature sets to represent the mutual dependence of samples as incipient fault features. Then, SOLFDA is proposed to compress the high-dimensional SMI fault feature sets of testing and training samples into low-dimensional eigenvectors with clearer clustering. Finally, Optimized Evidence-Theoretic k-Nearest Neighbor Classifier (OET-KNNC) is introduced to implement weak failure recognition for low-dimensional eigenvectors. Under the supervision of class labels, SOLFDA achieves good discrimination property by maximizing the between-manifold divergence and minimizing the within-manifold divergence. Meanwhile, an orthogonality constraint on SOLFDA can make the output sparse features statistically uncorrelated. Therefore, SMI feature set combining SOLFDA is able to extract the essential but weak fault features of rotating machinery effectively, compared with popular signal processing techniques and unsupervised dimension reduction methods. The weak fault diagnosis example on deep groove ball bearings demonstrates the advantage of the weak fault diagnosis method proposed in this paper. (C) 2015 Elsevier B.V. All rights reserved.
机译:提出了一种基于特征减少的监督正交局部Fisher判别分析(SOLFDA)的新的弱故障诊断方法。在这种方法中,将所有样本和训练样本之间的香农互信息(SMI)组合到SMI特征集中,以将样本的相互依赖性表示为初始故障特征。然后,提出了SOLFDA将测试和训练样本的高维SMI故障特征集压缩为具有更清晰聚类的低维特征向量。最后,引入了最佳证据理论k最近邻分类器(OET-KNNC),以实现低维特征向量的弱失效识别。在类别标签的监督下,SOLFDA通过最大化流形之间的差异和最小化流形内部的差异来实现良好的辨别性能。同时,对SOLFDA的正交约束可以使输出稀疏特征在统计上不相关。因此,与流行的信号处理技术和无监督降维方法相比,结合SOLFDA的SMI功能集可以有效地提取旋转机械的基本但微弱的故障特征。深沟球轴承的弱故障诊断实例证明了本文提出的弱故障诊断方法的优势。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号