首页> 外文期刊>Neurocomputing >Content based medical image retrieval using dictionary learning
【24h】

Content based medical image retrieval using dictionary learning

机译:使用字典学习的基于内容的医学图像检索

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a clustering method using dictionary learning is proposed to group large medical databases. An approach grouping similar images into clusters that are sparsely represented by the dictionaries and learning dictionaries simultaneously via K-SVD is proposed. A query image is matched with the existing dictionaries to identify the dictionary with the sparsest representation using an Orthogonal Matching Pursuit (OMP) algorithm. Then images in the cluster associated with this dictionary are compared using a similarity measure to retrieve images similar to the query image. The main features of the method are that it requires no training data and works well on the medical databases which are not restricted to specific context. The performance of the proposed method is examined on IRMA test image database. The experimental results demonstrate the efficacy of the proposed method in the retrieval of medical images. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文提出了一种基于字典学习的聚类方法,对大型医学数据库进行分组。提出了一种将相似的图像分为几类,分别由字典稀疏表示和通过K-SVD同时学习字典的方法。使用正交匹配追踪(OMP)算法,将查询图像与现有字典进行匹配,以标识具有最稀疏表示形式的字典。然后,使用相似性度量比较与该字典关联的聚类中的图像,以检索与查询图像相似的图像。该方法的主要特点是不需要培训数据,并且可以在不限于特定上下文的医学数据库上很好地工作。在IRMA测试图像数据库上检查了该方法的性能。实验结果证明了该方法在医学图像检索中的有效性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号