首页> 外文期刊>Neurocomputing >Adaptive displacement online control of shape memory alloys actuator based on neural networks and hybrid differential evolution algorithm
【24h】

Adaptive displacement online control of shape memory alloys actuator based on neural networks and hybrid differential evolution algorithm

机译:基于神经网络和混合微分进化算法的形状记忆合金作动器自适应位移在线控制

获取原文
获取原文并翻译 | 示例

摘要

Shape memory alloys (SMAs) are smart metallic materials, which have the ability to recover their shape when heated, even under high-applied load and large inelastic deformation. This characteristic helps SMA provide an interesting alternative to replace conventional actuator. This paper proposes an adaptive online displacement control of an SMA actuator that is created by combining an adaptive feed-forward neural networks ( AFNNs) model and a PID feedback controller to increase the accuracy and to eliminate the steady state error in displacement position control process of the SMA actuator. The AFNN model, which is created by combining a multi-layers perceptron neural networks (MLPNNs) structure and an auto regressive with exogenous input (ARX) model, is used for modeling and identifying the hysteresis inverse model of the SMA actuator. Then, a new hybrid differential evolution (HDE) algorithm, which is a combination between a traditional differential evolution algorithm and a back-propagation algorithm, is used to optimally generate the best weights of the AFNN model. Due to the offline identification, the proposed adaptive online displacement control can learn the hysteresis behavior of the SMA actuator in advance and then provide online control signal efficiently. Consequently, the displacement of SMA actuator is controlled robustly and more precisely. (C) 2015 Elsevier B.V. All rights reserved.
机译:形状记忆合金(SMA)是智能金属材料,即使在高施加载荷和大的非弹性变形下,也具有在加热时恢复形状的能力。该特性有助于SMA提供有趣的替代方案来代替传统的执行器。本文提出了一种SMA执行器的自适应在线位移控制方法,该方法是通过结合自适应前馈神经网络(AFNNs)模型和PID反馈控制器来创建的,以提高精度并消除位移位置控制过程中的稳态误差。 SMA执行器。通过将多层感知器神经网络(MLPNN)结构与具有外生输入的自回归模型(ARX)相结合而创建的AFNN模型用于建模和识别SMA执行器的滞后逆模型。然后,将传统差分演化算法和反向传播算法相结合的新混合差分演化(HDE)算法用于最优地生成AFNN模型的最佳权重。由于离线识别,所提出的自适应在线位移控制可以提前了解SMA执行器的磁滞行为,然后有效地提供在线控制信号。因此,SMA执行器的位移得到了稳健且更精确的控制。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号