首页> 外文期刊>Neurocomputing >Posture transition identification on PD patients through a SVM-based technique and a single waist-worn accelerometer
【24h】

Posture transition identification on PD patients through a SVM-based technique and a single waist-worn accelerometer

机译:通过基于SVM的技术和单个腰戴式加速度计对PD患者进行姿势过渡识别

获取原文
获取原文并翻译 | 示例

摘要

Identification of activities of daily living is essential in order to evaluate the quality of life both in the elderly and patients with mobility problems. Posture transitions (PT) are one of the most mechanically demanding activities in daily life and, thus, they can lead to falls in patients with mobility problems. This paper deals with PT recognition in Parkinson's disease (PD) patients by means of a triaxial accelerometer situated between the anterior and the left lateral part of the waist. Since sensor's orientation is susceptible to change during long monitoring periods, a hierarchical structure of classifiers is proposed in order to identify PT while allowing such orientation changes. Results are presented based on signals obtained from 20 PD patients and 67 healthy people who wore an inertial sensor on different positions among the anterior and the left lateral part of the waist. The algorithm has been compared to a previous approach in which only the anterior-lateral location was analyzed improving the sensitivity while preserving specificity. Moreover, different supervised machine learning techniques have been evaluated in distinguishing PT. Results show that the location of the sensor slightly affects method's performance and, furthermore, PD motor state does not alter its accuracy. (C) 2015 Elsevier B.V. All rights reserved.
机译:为了评估老年人和行动不便患者的生活质量,识别日常生活活动至关重要。姿势过渡(PT)是日常生活中对机械要求最高的活动之一,因此,它们可能导致行动不便的患者摔倒。本文通过位于腰部前部和左侧部之间的三轴加速度计来处理帕金森氏病(PD)患者的PT识别。由于传感器的方向很容易在较长的监视周期内发生变化,因此提出了一种分类器的分层结构,以便在允许这种方向变化的同时识别PT。根据从20名PD患者和67名健康人的信号中得出结果,这些人在腰部的前部和左侧部分之间的不同位置戴着惯性传感器。该算法已与以前的方法进行了比较,在该方法中,仅分析了前外侧位置,从而提高了灵敏度,同时保留了特异性。此外,在区分PT方面已经评估了不同的监督机器学习技术。结果表明,传感器的位置会稍微影响方法的性能,此外,PD电机状态不会改变其准确性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2015年第21期|144-153|共10页
  • 作者单位

    Univ Politecn Catalunya BarcelonaTech UPC, Tech Res Ctr Dependency Care & Autonomous Living, Barcelona 08800, Spain;

    Univ Politecn Catalunya BarcelonaTech UPC, Tech Res Ctr Dependency Care & Autonomous Living, Barcelona 08800, Spain;

    Univ Politecn Catalunya BarcelonaTech UPC, Tech Res Ctr Dependency Care & Autonomous Living, Barcelona 08800, Spain;

    Univ Politecn Catalunya BarcelonaTech UPC, Tech Res Ctr Dependency Care & Autonomous Living, Barcelona 08800, Spain;

    Univ Politecn Catalunya BarcelonaTech UPC, Tech Res Ctr Dependency Care & Autonomous Living, Barcelona 08800, Spain;

    NUI Galway NUIG, Dept Elect & Elect Engn, Galway, Ireland|Consorci Sanitari Garraf, Fundacio St Antoni Abat, Vilanova I La Geltru, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Accelerometer; Posture transitions; Parkinson's disease; Support vector machines;

    机译:加速度计;姿势转变;帕金森氏病;支持向量机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号