首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Step Detection and Parameterization for Gait Assessment Using a Single Waist-Worn Accelerometer
【24h】

Step Detection and Parameterization for Gait Assessment Using a Single Waist-Worn Accelerometer

机译:使用单个腰穿加速度计进行步态评估的步检测和参数化

获取原文
获取原文并翻译 | 示例

摘要

One of the major reasons why the elderly lose their ability to live independently at home is the decline in gait performance. A measure to assess gait performance using accelerometers is step counting. The main problem with most step detection algorithms is the loss of accuracy at low speeds (0.8 m/s) which limits their use in frail elderly populations. In this paper, a step detection algorithm was developed and validated using data from 10 healthy adults and 21 institutionalized seniors, predominantly frail older adults. Data were recorded using a single waist-worn triaxial accelerometer as each of the subjects performed one 10-m-walk trial. The algorithm demonstrated high mean sensitivity (99 1%) for gait speeds between 0.2–1.5 m/s. False positives were evaluated with a series of motion activities performed by one subject. These activities simulate acceleration patterns similar to those generated near the body's center of mass while walking in terms of amplitude signal and periodicity. Cycling was the activity which led to a higher number of false positives. By applying template matching, we reduced by the number of false positives in the cycling activity and eliminated all false positives in the rest of activities. Using K-means clustering, we obtained two different characteristic step patterns, one for normal and one for frail walking, where particular gait events related to limb impacts and muscle flexions were recognized. The proposed system can help to identify seniors at high risk of functional decline and monitor the progress of patients undergoing exercise therapy interventions.
机译:老年人失去独立生活能力的主要原因之一是步态表现的下降。使用加速度计评估步态表现的一种方法是步数计数。大多数步进检测算法的主要问题是低速(0.8 m / s)时精度下降,这限制了它们在虚弱的老年人口中的使用。在本文中,使用10位健康成年人和21位机构化老年人(主要是年老体弱的成年人)的数据开发并验证了步检测算法。当每个受试者进行一次10 m行走试验时,使用单根腰部穿戴式三轴加速度计记录数据。该算法对步态速度在0.2–1.5 m / s之间的步态显示出较高的平均灵敏度(99 1%)。通过一个对象进行的一系列运动活动来评估假阳性。这些活动模拟的加速度模式类似于在振幅信号和周期性方面行走时在人体质心附近产生的加速度模式。骑自行车是导致大量误报的活动。通过应用模板匹配,我们减少了骑自行车活动中误报的数量,并消除了其余活动中的所有误报。使用K-均值聚类,我们获得了两种不同的特征步态模式,一种为正常步态,另一种为虚弱步态,其中识别出与肢体撞击和肌肉弯曲有关的特定步态事件。拟议的系统可以帮助识别处于功能下降高风险的老年人,并监测接受运动疗法干预的患者的进展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号