首页> 外文期刊>Neurocomputing >Small margin ensembles can be robust to class-label noise
【24h】

Small margin ensembles can be robust to class-label noise

机译:小幅度的合奏可以对类标签噪声具有鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

Subsampling is used to generate bagging ensembles that are accurate and robust to class-label noise. The effect of using smaller bootstrap samples to train the base learners is to make the ensemble more diverse. As a result, the classification margins tend to decrease. In spite of having small margins, these ensembles can be robust to class-label noise. The validity of these observations is illustrated in a wide range of synthetic and real-world classification tasks. In the problems investigated, subsampling significantly outperforms standard bagging for different amounts of class-label noise. By contrast, the effectiveness of subsampling in random forest is problem dependent. In these types of ensembles the best overall accuracy is obtained when the random trees are built on bootstrap samples of the same size as the original training data. Nevertheless, subsampling becomes more effective as the amount of classlabel noise increases. (C) 2015 Elsevier B.V. All rights reserved.
机译:二次采样用于生成对类别标签噪声准确且鲁棒的装袋合奏。使用较小的Bootstrap样本来训练基础学习者的效果是使整体更加多样化。结果,分类余量趋于减小。尽管有很小的余量,但是这些合奏对于分类标签噪声仍然很健壮。这些观察结果的有效性在各种各样的综合和实际分类任务中得到了说明。在调查的问题中,对于不同数量的类别标签噪声,二次采样明显优于标准包装。相比之下,随机森林中二次抽样的有效性取决于问题。在这些类型的合奏中,将随机树构建在与原始训练数据大小相同的自举样本上时,可以获得最佳的总体准确性。然而,随着类别标签噪声量的增加,二次采样变得更加有效。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号