首页> 外文期刊>Neurocomputing >Behavioral modeling of nonlinear RF power amplifiers using ensemble SDBCC network
【24h】

Behavioral modeling of nonlinear RF power amplifiers using ensemble SDBCC network

机译:基于集成SDBCC网络的非线性RF功率放大器的行为建模

获取原文
获取原文并翻译 | 示例

摘要

A new behavioral model of nonlinear RF power amplifiers (PA) is presented to treat memory effects. The key issue here is considering the phenomenon that uplink quadrature modulation signals are influenced not only by the current uplink signals, but also by previous terms. The variation of AM/AM and AM/PM, and the asymmetries in lower and upper intermodulation terms are frequently observed in high-power PAs. To treat these phenomena, this paper proposes a model based on artificial neural network. The contribution made of this model is to solve the order determination issue (determining the order of the previous output and input signals that have influence on the current output signal). In addition, the recognized difficulty of long training process is overcome by using SDBCC algorithm, a novel neural network design method combining structure decomposition and the Cascade-Correlation neural network algorithm. The required maximum delay is established by examining the autocorrelation coefficient of the residual error. Ensemble system is finally used to improve the performance further. This proposed method is successfully validated in nonlinear modeling of the RF PAs from HuaWei Company, including 8000 samples.
机译:提出了一种新的非线性RF功率放大器(PA)的行为模型来处理记忆效应。这里的关键问题是考虑以下现象:上行链路正交调制信号不仅受到当前上行链路信号的影响,还受到先前术语的影响。在高功率功率放大器中经常观察到AM / AM和AM / PM的变化以及上下互调项的不对称性。为了解决这些现象,本文提出了一种基于人工神经网络的模型。该模型的作用是解决顺序确定问题(确定对当前输出信号有影响的先前输出和输入信号的顺序)。此外,通过使用SDBCC算法克服了公认的长期训练过程中的困难,该算法是一种将结构分解和Cascade-Correlation神经网络算法相结合的新型神经网络设计方法。通过检查残留误差的自相关系数来确定所需的最大延迟。最后使用集成系统进一步提高性能。该方法在华威公司射频功率放大器的非线性建模中成功验证,包括8000个样本。

著录项

  • 来源
    《Neurocomputing》 |2015年第22期|24-32|共9页
  • 作者单位

    Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing 210096, China;

    Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing 210096, China;

    Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing 210096, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    RF power amplifier; Memory effects; Order determination; Cascade-correlation algorithm; Parallel learning;

    机译:射频功率放大器;记忆效应;订单确定;级联相关算法;平行学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号