首页> 外文期刊>Neurocomputing >Feature learning based on SAE-PCA network for human gesture recognition in RGBD images
【24h】

Feature learning based on SAE-PCA network for human gesture recognition in RGBD images

机译:基于SAE-PCA网络的特征学习用于RGBD图像中的手势识别

获取原文
获取原文并翻译 | 示例

摘要

Coming with the emerging of depth sensors link Microsoft Kinect, human hand gesture recognition has received ever increasing research interests recently. A successful gesture recognition system has usually heavily relied on having a good feature representation of data, which is expected to be task-dependent as well as coping with the challenges and opportunities induced by depth sensor. In this paper, a feature learning approach based on sparse auto-encoder (SAE) and principle component analysis is proposed for recognizing human actions, i.e. finger-spelling or sign language, for RGB-D inputs. The proposed model of feature learning is consisted of two components: First, features are learned respectively from the RGB and depth channels, using sparse auto-encoder with convolutional neural networks. Second, the learned features from both channels is concatenated and fed into a multiple layer PCA to get the final feature. Experimental results on American sign language (ASL) dataset demonstrate that the proposed feature learning model is significantly effective, which improves the recognition rate from 75% to 99.05% and outperforms the state-of-the-art. (C) 2014 Elsevier B.V. All rights reserved.
机译:随着连接Microsoft Kinect的深度传感器的兴起,人类手势识别近来受到越来越多的研究兴趣。成功的手势识别系统通常严重依赖于具有良好的数据特征表示,这将依赖于任务以及应付深度传感器带来的挑战和机遇。本文提出了一种基于稀疏自动编码器(SAE)和主成分分析的特征学习方法,用于识别RGB-D输入的人类动作,即手指拼写或手语。提出的特征学习模型由两个部分组成:首先,使用带卷积神经网络的稀疏自动编码器分别从RGB和深度通道中学习特征。其次,将从两个通道学习到的特征连接起来,并馈入多层PCA中以获得最终特征。在美国手语(ASL)数据集上的实验结果表明,所提出的特征学习模型非常有效,将识别率从75%提高到了99.05%,并胜过了最新技术。 (C)2014 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2015年第2期|565-573|共9页
  • 作者单位

    Xiamen Univ, Sch Informat Sci & Technol, Xiamen 361005, Peoples R China|Xiamen Univ, Fujian Key Lab Brain Like Intelligent Syst, Xiamen 361005, Peoples R China;

    Xiamen Univ, Sch Informat Sci & Technol, Xiamen 361005, Peoples R China|Xiamen Univ, Fujian Key Lab Brain Like Intelligent Syst, Xiamen 361005, Peoples R China|GuiZhou Normal Univ, Inst Math & Comp Sci, Beijing 550001, Guizhou, Peoples R China;

    Xiamen Univ, Sch Informat Sci & Technol, Xiamen 361005, Peoples R China|Xiamen Univ, Fujian Key Lab Brain Like Intelligent Syst, Xiamen 361005, Peoples R China;

    Xiamen Univ, Sch Informat Sci & Technol, Xiamen 361005, Peoples R China|Xiamen Univ, Fujian Key Lab Brain Like Intelligent Syst, Xiamen 361005, Peoples R China;

    Xiamen Univ, Sch Informat Sci & Technol, Xiamen 361005, Peoples R China|Xiamen Univ, Fujian Key Lab Brain Like Intelligent Syst, Xiamen 361005, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning; Auto-encoder; Convolutional neural networks; American sign language recognition;

    机译:深度学习;自动编码器;卷积神经网络;美国手语识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号