首页> 外文期刊>Neurocomputing >Adaptive comprehensive learning bacterial foraging optimization and its application on vehicle routing problem with time windows
【24h】

Adaptive comprehensive learning bacterial foraging optimization and its application on vehicle routing problem with time windows

机译:自适应综合学习细菌觅食优化及其在带时间窗的车辆路径问题中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a variant of the bacterial foraging optimization (BFO) algorithm with time-varying chemotaxis step length and comprehensive learning strategy which we call adaptive comprehensive learning bacterial foraging optimization (ALCBFO). An adaptive non-linearly decreasing modulation model is used to keep a well balance between the exploration and exploitation of the proposed algorithm. The comprehensive learning mechanism maintains the diversity of the bacterial population and thus alleviates the premature convergence. Compared with the classical GA, PSO, the original BFO and two improved BFO (BFO-LDC and BFO-NDC) algorithm, the proposed ACLBFO shows significantly better performance in solving multimodal problems. We also assess the performance of the ACLBFO method on vehicle routing problem with time windows (VRPTW). Compared with three other BFO algorithms, the proposed algorithm is superior and confirms its potential to solve vehicle routing problem with time windows (VRPTW). (C) 2014 Elsevier B.V. All rights reserved.
机译:本文提出了一种具有时变趋化步长和综合学习策略的细菌觅食优化(BFO)算法,我们将其称为自适应综合学习细菌觅食优化(ALCBFO)。自适应非线性递减调制模型用于在所提出算法的探索和开发之间保持良好的平衡。全面的学习机制可保持细菌种群的多样性,从而减轻过早的收敛。与经典GA,PSO,原始BFO和两个改进的BFO(BFO-LDC和BFO-NDC)算法相比,所提出的ACLBFO在解决多峰问题方面表现出明显更好的性能。我们还评估了带有时间窗(VRPTW)的车辆路径问题的ACLBFO方法的性能。与其他三种BFO算法相比,该算法具有优越性,并证实了其解决带时间窗(VRPTW)车辆路径问题的潜力。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号