首页> 外文期刊>Neurocomputing >Steel plates fault diagnosis on the basis of support vector machines
【24h】

Steel plates fault diagnosis on the basis of support vector machines

机译:基于支持向量机的钢板故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Fault diagnosis is always a big concern in industry production. As industrial technology has developed a lot, new fault diagnosis methods are needed to distinguish faults with only fine distinctions. The higher quality a production is required to have, the better fault diagnosis method the factories should apply. A fault diagnosis method based on modified Support Vector Machines (SVMs) is shown in this paper. With this method, dimension of samples is effectively reduced by recursive feature elimination (RFE) algorithm, and computing time is saved at the same time. Besides, classification accuracy is improved by parameter optimizing and sample size balancing strategy. A faults dataset of steel plates is taken as a practical case. And SVMs that are modified by different algorithms are utilized to complete fault diagnosis. This combined measure shows its superiority in sorting common faults of steel plates over original SVMs. Some essential procedures in model developing, such as normalization and cross validation, are also referred to. (C) 2014 Elsevier B.V. All rights reserved.
机译:故障诊断一直是工业生产中的大问题。随着工业技术的发展,需要新的故障诊断方法来仅通过细微的区别来识别故障。要求生产的质量越高,工厂应采用的故障诊断方法越好。提出了一种基于改进的支持向量机的故障诊断方法。使用该方法,通过递归特征消除(RFE)算法有效地减少了样本的维数,同时节省了计算时间。此外,通过参数优化和样本量平衡策略提高了分类精度。以钢板的故障数据集为例。通过不同算法修改的SVM被用于完成故障诊断。这种综合措施显示出在分类钢板常见故障方面优于原始SVM的优势。还提到了模型开发中的一些基本过程,例如规范化和交叉验证。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号