首页> 外文期刊>Neurocomputing >Image reconstruction under multiplicative speckle noise using total variation
【24h】

Image reconstruction under multiplicative speckle noise using total variation

机译:利用总变化量在斑点噪声下重建图像

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a method for reconstructing images or volumes from a partial set of observations, under the Rayleigh distributed multiplicative noise model, which is the appropriate algebraic model in ultrasound (US) imaging. The proposed method performs a variable splitting to introduce an auxiliary variable to serve as the argument of the total variation (TV) regularizer term. Applying the Augmented Lagrangian framework and using an iterative alternating minimization method lead to simpler problems involving TV minimization with a least squares term. The resulting Gauss Seidel scheme is an instance of the Alternating Direction Method of Multipliers (ADMM) method for which convergence is guaranteed. Experimental results show that the proposed method achieves a lower reconstruction error than existing methods. (C) 2014 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种在瑞利分布乘性噪声模型下从部分观测值重建图像或体积的方法,该模型是超声(US)成像中的合适代数模型。所提出的方法执行变量拆分以引入辅助变量,以用作总变化量(TV)正则项的参数。应用增强拉格朗日框架并使用迭代交替最小化方法会导致涉及电视最小化和最小二乘项的简单问题。所得的高斯Seidel方案是乘法器交替方向方法(ADMM)方法的一个实例,该方法可以保证收敛。实验结果表明,与现有方法相比,该方法具有较低的重构误差。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号