首页> 外文期刊>Neurocomputing >An improved maximum spread algorithm with application to complex-valued RBF neural networks
【24h】

An improved maximum spread algorithm with application to complex-valued RBF neural networks

机译:改进的最大扩展算法在复值RBF神经网络中的应用

获取原文
获取原文并翻译 | 示例

摘要

It has been known that one of the important steps in training a complex-valued radial basis function neural network is to effectively determine its centers and widths of neurons in the hidden layer. In this paper, an improved maximum spread algorithm is propose to solve this issue. Its basic idea is that the choice of centers not only depends on the distances between samples from different classes, but also is heavily affected by the average distance between samples in the same class. The relationship between external and inner distances is taken into account when determining centers. The performance of this algorithm is tested on several datasets. It is shown that much better performance can be achieved by the developed algorithm than by some existing ones. (C) 2016 Elsevier B.V. All rights reserved.
机译:众所周知,训练复值径向基函数神经网络的重要步骤之一是有效地确定其在隐藏层中神经元的中心和宽度。为了解决这个问题,本文提出了一种改进的最大扩展算法。其基本思想是中心的选择不仅取决于不同类别的样本之间的距离,而且还受同一类别中样本之间的平均距离的很大影响。确定中心时,应考虑外部距离和内部距离之间的关系。该算法的性能已在多个数据集上进行了测试。结果表明,与现有算法相比,改进算法可以实现更好的性能。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号