首页> 外文期刊>Neurocomputing >An investigation of rolling bearing early diagnosis based on high-frequency characteristics and self-adaptive wavelet de-noising
【24h】

An investigation of rolling bearing early diagnosis based on high-frequency characteristics and self-adaptive wavelet de-noising

机译:基于高频特征和自适应小波消噪的滚动轴承早期诊断研究

获取原文
获取原文并翻译 | 示例

摘要

Rolling bearings are necessary parts in rotary machines. However, the problem of early fault diagnosis for rolling bearings is difficult to solve due to its low signal-to-noise ratio and non-linear and non-stationary signal. Based on a detailed investigation of rolling bearing vibration signals, this paper proposes a method for determining whether a fault occurs by comparing the high-frequency band power. If a fault occurs, we first de-noise the vibration signals using wavelet de-noising and then extract the fault characteristics in both the time domain and the time-frequency domain to avoid the limitations of using only one domain. Finally, the fault location is identified using the grey correlation method. According to the method application results, the recognition accuracy using the method proposed in this paper is satisfactory, proving that the method has superior performance. (C) 2016 Elsevier B.V. All rights reserved.
机译:滚动轴承是旋转机械中必不可少的零件。然而,由于其低的信噪比以及非线性和非平稳的信号,因此难以解决滚动轴承的早期故障诊断问题。在对滚动轴承振动信号进行详细研究的基础上,提出了一种通过比较高频功率确定故障是否发生的方法。如果发生故障,我们首先使用小波消噪对振动信号进行消噪,然后在时域和时频域中提取故障特征,以避免仅使用一个域的局限性。最后,使用灰色关联法确定故障位置。根据该方法的应用结果,本文提出的方法的识别精度令人满意,证明了该方法的优越性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第5期|649-656|共8页
  • 作者单位

    Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Sch Naval Architecture Engn, Dalian 116024, Peoples R China;

    Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Sch Naval Architecture Engn, Dalian 116024, Peoples R China;

    Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Sch Naval Architecture Engn, Dalian 116024, Peoples R China|Dalian Ocean Univ, Sch Nav & Naval Architecture Engn, Dalian 116023, Peoples R China;

    Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Sch Naval Architecture Engn, Dalian 116024, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Wavelet de-noising; Energy entropy; Grey relational analysis; Rolling bearing; Fault diagnosis;

    机译:小波消噪能量熵灰色关联分析滚动轴承故障诊断;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号