首页> 外文期刊>Neurocomputing >Recursive reduced kernel based extreme learning machine for aero-engine fault pattern recognition
【24h】

Recursive reduced kernel based extreme learning machine for aero-engine fault pattern recognition

机译:基于递归约简的极限学习机,用于航空发动机故障模式识别

获取原文
获取原文并翻译 | 示例

摘要

Kernel based extreme learning machine (K-ELM) has better generalization performance than basic ELM with less tuned parameters in most applications. However the original K-ELM is lack of sparseness, which makes the model scale grows linearly with sample size. This paper focuses on sparsity of K-ELM and proposes recursive reduced kernel based extreme learning machine (RR-KELM). The proposed algorithm chooses samples making more contribution to target function to constitute kernel dictionary meanwhile considering all the constraints generated by the whole training set. As a result it can simplify model structure and realize sparseness of K-ELM. Experimental results on benchmark datasets show that no matter for regression or classification problems, RR-KELM produces more compact model structure and higher real-time in comparison with other methods. The application of RR-KELM for aero-engine fault pattern recognition is also given in this paper. The simulation results demonstrate that RR-KELM has a high recognition rate on aero-engine fault pattern based on measurable parameters of aero-engine. (C) 2016 Elsevier B.V. All rights reserved.
机译:在大多数应用中,基于内核的极限学习机(K-ELM)具有比基本ELM更好的泛化性能,且参数调整较少。然而,原始的K-ELM缺乏稀疏性,这使得模型规模随样本大小线性增长。本文着重于K-ELM的稀疏性,并提出了一种基于递归约简的极限学习机(RR-KELM)。该算法选择样本对目标函数有较大贡献的样本构成核字典,同时考虑整个训练集产生的所有约束。结果,它可以简化模型结构并实现K-ELM的稀疏性。在基准数据集上的实验结果表明,与其他方法相比,无论是回归还是分类问题,RR-KELM都能产生更紧凑的模型结构和更高的实时性。本文还提出了RR-KELM在航空发动机故障模式识别中的应用。仿真结果表明,基于可测量的航空发动机参数,RR-KELM对航空发动机故障模式具有较高的识别率。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第19期|1038-1045|共8页
  • 作者单位

    Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Peoples R China|Aviat Ind Corp China, Aviat Motor Control Syst Inst, Wuxi 214063, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Peoples R China|Collaborat Innovat Ctr Adv Aeroengine, Beijing 100191, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Peoples R China|Collaborat Innovat Ctr Adv Aeroengine, Beijing 100191, Peoples R China|Aviat Ind Corp China, Aviat Motor Control Syst Inst, Wuxi 214063, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Extreme learning machine; Kernel method; Sparseness; Reduced technique; Aero-engine; Fault pattern recognition;

    机译:极限学习机;核方法;稀疏性;简化技术;航空发动机;故障模式识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号