首页> 外文期刊>Neurocomputing >Synchronous Multi-Stream Hidden Markov Model for offline Arabic handwriting recognition without explicit segmentation
【24h】

Synchronous Multi-Stream Hidden Markov Model for offline Arabic handwriting recognition without explicit segmentation

机译:同步多流隐藏马尔可夫模型,用于无需明确分段的离线阿拉伯语手写识别

获取原文
获取原文并翻译 | 示例

摘要

Arabic handwriting recognition is still a challenging task due especially to the unlimited variation in human handwriting, the large variety of Arabic character shapes, the presence of ligature between characters and overlapping of the components. In this paper, we propose an offline Arabic-handwritten recognition system for Tunisian city names. A review of the literature shows that the Hidden Markov Model (HMM) adopting the sliding window approach are the mainly used models, which gives good results when a relevant feature-extraction process is performed. However, these models are utilized especially to model one dimensional signal. Consequently, to model bi-dimensional signals or multiple features, a solution based on combining multi-classifiers and then a post-treatment selecting the best hypothesis is applied. The problem considered in this case consists in searching the best way to combine the contribution of these classifiers. In this study, we put forward an extension of the HMM, which can surmount this problem. Our proposed system is based on a synchronous multi-stream HMM which has the advantage of efficiently modelling the interaction between multiple features. These features are composed of a combination of statistical and structural ones, which are extracted over the columns and rows using a sliding window approach. In fact, two word models are implemented based on the holistic and analytical approaches without any explicit segmentation. In the first approach, all the classes share the same architecture nevertheless, the parameters are different. In the second approach, each class has its own model by concatenating their components models. The results carried out on the IFN/ENIT database show that the analytical approach performs better than the holistic one and that the data fusion model is more efficient than the state fusion model. (C) 2016 Elsevier B.V. All rights reserved.
机译:阿拉伯文字的识别仍然是一项艰巨的任务,特别是由于人类手写的无限变化,阿拉伯字符形状的多样性,字符之间的连字的存在以及组件的重叠。在本文中,我们提出了一种用于突尼斯城市名称的离线阿拉伯语手写识别系统。文献综述表明,采用滑动窗方法的隐马尔可夫模型(HMM)是主要使用的模型,当进行相关的特征提取过程时,效果很好。但是,这些模型尤其用于对一维信号进行建模。因此,为了对二维信号或多个特征建模,可以应用基于组合多个分类器然后选择最佳假设的后处理的解决方案。在这种情况下考虑的问题在于寻找组合这些分类器的贡献的最佳方法。在这项研究中,我们提出了HMM的扩展,可以克服这个问题。我们提出的系统基于同步多流HMM,其优点是可以有效地建模多个功能之间的交互。这些特征由统计和结构特征的组合组成,这些特征是使用滑动窗口方法在列和行上提取的。实际上,基于整体和分析方法实现了两个单词模型,而没有任何明确的细分。在第一种方法中,所有类都共享相同的体系结构,但是参数是不同的。在第二种方法中,每个类通过串联其组件模型来拥有自己的模型。在IFN / ENIT数据库上进行的结果表明,这种分析方法比整体方法性能更好,并且数据融合模型比状态融合模型更有效。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号