首页> 外文期刊>Neurocomputing >Data mining techniques in social media: A survey
【24h】

Data mining techniques in social media: A survey

机译:社交媒体中的数据挖掘技术:一项调查

获取原文
获取原文并翻译 | 示例

摘要

Today, the use of social networks is growing ceaselessly and rapidly. More alarming is the fact that these networks have become a substantial pool for unstructured data that belong to a host of domains, including business, governments and health. The increasing reliance on social, networks calls for data mining techniques that is likely to facilitate reforming the unstructured data and place them within a systematic pattern. The goal of the present survey is to analyze the data mining techniques that were utilized by social media networks between 2003 and 2015. Espousing criterion-based research strategies, 66 articles were identified to constitute the source of the present paper. After a careful review of these articles, we found that 19 data mining techniques have been used with social media data to address 9 different research objectives in 6 different industrial and services domains. However, the data mining applications in the social media are still raw and require more effort by academia and industry to adequately perform the job. We suggest that more research be conducted by both the academia and the industry since the studies done so far are not sufficiently exhaustive of data mining techniques. (C) 2016 Elsevier B.V. All rights reserved.
机译:今天,社交网络的使用不断增长。更令人震惊的事实是,这些网络已成为非结构化数据的实质池,这些非结构化数据属于许多领域,包括企业,政府和医疗机构。对社交网络的日益依赖要求使用数据挖掘技术,该技术可能有助于改革非结构化数据并将其置于系统模式中。本次调查的目的是分析2003年至2015年间社交媒体网络使用的数据挖掘技术。基于标准的研究策略,确定了66篇文章,构成了本文的来源。在仔细阅读这些文章之后,我们发现19种数据挖掘技术已与社交媒体数据一起使用,以解决6个不同工业和服务领域中的9个不同研究目标。但是,社交媒体中的数据挖掘应用程序仍然是原始的,需要学术界和工业界做出更多努力才能充分执行该工作。我们建议学术界和业界都进行更多的研究,因为到目前为止所做的研究还不足以穷尽数据挖掘技术。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第19期|654-670|共17页
  • 作者单位

    Univ Western Ontario, Dept Elect & Comp Engn, 1151 Richmond St, London, ON N6A 3K7, Canada;

    Univ Western Ontario, Dept Elect & Comp Engn, 1151 Richmond St, London, ON N6A 3K7, Canada;

    Univ Sharjah, Dept Elect & Comp Engn, Sharjah, U Arab Emirates;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Data mining; Social media; Social media networks analysis; Survey;

    机译:数据挖掘;社交媒体;社交媒体网络分析;调查;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号