首页> 外文期刊>Neurocomputing >A Michigan memetic algorithm for solving the community detection problem in complex network
【24h】

A Michigan memetic algorithm for solving the community detection problem in complex network

机译:解决复杂网络中社区发现问题的密歇根模因算法

获取原文
获取原文并翻译 | 示例

摘要

Community structure is an important feature in complex networks which has great significant for organization of networks. The community detection is the process of partitioning the network into some communities in such a way that there exist many connections in the communities and few connections between them. In this paper a Michigan memetic algorithm; called MLAMA-Net; is proposed for solving the community detection problem. The proposed algorithm is an evolutionary algorithm in which each chromosome represents a part of the solution and the whole population represents the solution. In the proposed algorithm, the population of chromosomes is a network of chromosomes which is isomorphic to the input network. Each node has a chromosome and a learning automaton (LA). The chromosome represents the community of corresponding node and saves the histories of exploration. The learning automaton represents a meme and saves the histories of the exploitation. The proposed algorithm is a distributed algorithm in which each chromosome locally evolves by evolutionary operators and improves by a local search. By interacting with both the evolutionary operators and local search, our algorithm effectively detects the community structure in complex networks and solves the resolution limit problem of modularity optimization. To show the superiority of our proposed algorithm over the some well-known algorithms, several computer experiments have been conducted. The obtained results show MLAMA-Net is effective and efficient at detecting the community structure in complex networks. (C) 2016 Elsevier B.V. All rights reserved.
机译:社区结构是复杂网络中的重要特征,对于网络的组织具有重要意义。社区检测是以以下方式将网络划分为一些社区的过程:社区中存在许多连接,而社区之间几乎没有连接。本文采用了密歇根州的模因算法。称为MLAMA-Net;为解决社区发现问题提出了建议。所提出的算法是一种进化算法,其中每个染色体代表解的一部分,整个种群代表解。在提出的算法中,染色体种群是与输入网络同构的染色体网络。每个节点都有一条染色体和一个学习自动机(LA)。染色体代表相应节点的群落,并保存了探索的历史。学习自动机代表一个模因并保存剥削的历史。所提出的算法是一种分布式算法,其中每个染色体由进化算子局部进化,并通过局部搜索得到改善。通过与进化算子和局部搜索相互作用,我们的算法有效地检测了复杂网络中的社区结构,并解决了模块化优化的分辨率极限问题。为了显示我们提出的算法优于某些知名算法的优势,已进行了几次计算机实验。获得的结果表明,MLAMA-Net在检测复杂网络中的社区结构方面是有效的。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号