首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >A Memetic Particle Swarm Optimization Algorithm for Community Detection in Complex Networks
【24h】

A Memetic Particle Swarm Optimization Algorithm for Community Detection in Complex Networks

机译:复杂网络中用于社区检测的模因粒子群优化算法

获取原文
获取原文并翻译 | 示例

摘要

In recent years, community detection has become a hot research topic in complex networks. Many of the proposed algorithms are for detecting community based on the modularity Q. However, there is a resolution limit problem in modularity optimization methods. In order to detect the community structure more effectively, a memetic particle swarm optimization algorithm (MPSOA) is proposed to optimize the modularity density by introducing particle swarm optimization-based global search operator and tabu local search operator, which is useful to keep a balance between diversity and convergence. For comparison purposes, two state-of-the-art algorithms, namely, meme-net and fast modularity, are carried on the synthetic networks and other four real-world network problems. The obtained experiment results show that the proposed MPSOA is an efficient heuristic approach for the community detection problems.
机译:近年来,社区检测已成为复杂网络中的热门研究课题。所提出的许多算法都是基于模块化Q来检测社区的。但是,模块化优化方法中存在分辨率极限问题。为了更有效地检测社区结构,提出了一种模因粒子群优化算法(MPSOA),通过引入基于粒子群优化的全局搜索算子和禁忌局部搜索算子来优化模块密度,这有助于保持两者之间的平衡。多样性和融合。为了进行比较,在合成网络和其他四个实际网络问题上采用了两种最先进的算法,即meme-net和快速模块化。实验结果表明,提出的MPSOA是一种有效的启发式方法,可以解决社区发现问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号