首页> 外文期刊>Neurocomputing >An improved SVM classifier based on double chains quantum genetic algorithm and its application in analogue circuit diagnosis
【24h】

An improved SVM classifier based on double chains quantum genetic algorithm and its application in analogue circuit diagnosis

机译:基于双链量子遗传算法的改进SVM分类器及其在模拟电路诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

Support Vector Machine (SVM) classifier is widely used in analogue circuit diagnosis. However, the penalty parameter C and the kernel parameter gamma of SVM classifier with the radial basis function (RBF) affect the classification performance seriously. A double-chains-quantum-genetic-algorithm (DCQGA) based method is proposed to optimize C and gamma. In DCQGA, each chromosome carries two gene chains, and each of gene chains represents an optimization solution, which can accelerate the search process and help to find the global solution. Thereafter, the optimal parameters C and gamma are obtained by optimizing the parameter searching process with DCQGA. Two common datasets named Iris and Wine from UCI Machine Learning Repository are used to test the performance of the presented SVM classifier. The simulation results illustrate that the population's best fitness and the classifying accuracy of the proposed DCQGA-SVM are higher than that of the Particle-Swarm-Optimization based SVM (PSO-SVM), the Quantum Genetic Algorithm based SVM (QGA-SVM) and the classifier based on grid search method (GS-SVM). Finally, the proposed DCQGA-SVM is applied to analogue circuit diagnosis, a Sallen-Key bandpass filter circuit and a four-opamp biquad high-pass filter are chosen as circuits under test (CUT). Wavelet packet analysis is performed to extract the fault features before classifying. The experimental results show that the SVM parameters selected by DCQGA-SVM contribute to higher diagnosis accuracy than other methods referred in this paper. (C) 2016 Elsevier B.V. All rights reserved.
机译:支持向量机(SVM)分类器广泛用于模拟电路诊断。但是,带有径向基函数(RBF)的SVM分类器的惩罚参数C和核参数gamma会严重影响分类性能。提出了一种基于双链量子遗传算法(DCQGA)的方法来优化C和γ。在DCQGA中,每个染色体带有两条基因链,每个基因链代表一个优化解决方案,可以加快搜索过程并帮助找到全局解决方案。此后,通过使用DCQGA优化参数搜索过程来获得最佳参数C和伽玛。使用UCI机器学习存储库中的两个常见数据集Iris和Wine来测试所提出的SVM分类器的性能。仿真结果表明,所提出的DCQGA-SVM的总体最佳适应度和分类精度高于基于粒子群优化的支持向量机(PSO-SVM),基于量子遗传算法的支持向量机(QGA-SVM)和基于网格搜索方法(GS-SVM)的分类器。最后,将提出的DCQGA-SVM应用于模拟电路诊断,选择Sallen-Key带通滤波器电路和四运放双二阶高通滤波器作为被测电路(CUT)。在分类之前,执行小波包分析以提取故障特征。实验结果表明,与本文介绍的其他方法相比,DCQGA-SVM选择的SVM参数有助于提高诊断准确性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第26期|202-211|共10页
  • 作者单位

    Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China;

    Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China;

    Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China;

    Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Analog circuit diagnosis; SVM; DCQGA;

    机译:模拟电路诊断;SVM;DCQGA;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号