首页> 外文期刊>Neurocomputing >People counting based on head detection combining Adaboost and CNN in crowded surveillance environment
【24h】

People counting based on head detection combining Adaboost and CNN in crowded surveillance environment

机译:在拥挤的监视环境中基于结合Adaboost和CNN的头部检测的人数

获取原文
获取原文并翻译 | 示例

摘要

People counting is one of the key techniques in video surveillance. This task usually encounters many challenges in crowded environment, such as heavy occlusion, low resolution, imaging viewpoint variability, etc. Motivated by the success of R-CNN (Girshick et al., 2014) [1] on object detection, in this paper we propose a head detection based people counting method combining the Adaboost algorithm and the CNN. Unlike the R-CNN which uses the general object proposals as the inputs of CNN, our method uses the cascade Adaboost algorithm to obtain the head region proposals for CNN, which can greatly reduce the following classification time. Resorting to the strong ability of feature learning of the CNN, it is used as a feature extractor in this paper, instead of as a classifier as its commonly-used strategy. The final classification is done by a linear SVM classifier trained on the features extracted using the CNN feature extractor. Finally, the prior knowledge can be applied to post-process the detection results to increase the precision of head detection and the people count is obtained by counting the head detection results. A real classroom surveillance dataset is used to evaluate the proposed method and experimental results show that this method has good performance and outperforms the baseline methods, including deformable part model and cascade Adaboost methods. (C) 2016 Elsevier B.V. All rights reserved.
机译:人数统计是视频监控的关键技术之一。该任务通常在拥挤的环境中遇到许多挑战,例如重度遮挡,分辨率低,成像视点可变性等。本文基于R-CNN的成功经验(Girshick等,2014)[1]。我们提出了一种结合了Adaboost算法和CNN的基于头部检测的人数统计方法。与使用通用对象建议作为CNN输入的R-CNN不同,我们的方法使用级联Adaboost算法来获取CNN的头部建议,这可以大大减少以下分类时间。依靠CNN的强大的特征学习能力,本文将其用作特征提取器,而不是将其用作常用的分类器策略。最终分类由线性SVM分类器完成,该分类器在使用CNN特征提取器提取的特征上进行训练。最后,可以将先验知识应用于检测结果的后处理,以提高头部检测的精度,并通过对头部检测结果进行计数来获得人数。使用真实的教室监控数据集对方法进行了评估,实验结果表明该方法具有良好的性能,并且优于可变形部分模型和级联Adaboost方法等基线方法。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第5期|108-116|共9页
  • 作者单位

    Chongqing Univ Posts & Telecommun, Chongqing Key Lab Signal & Informat Proc, Chongqing, Peoples R China;

    Chongqing Univ Posts & Telecommun, Chongqing Key Lab Signal & Informat Proc, Chongqing, Peoples R China;

    Chongqing Univ Posts & Telecommun, Chongqing Key Lab Signal & Informat Proc, Chongqing, Peoples R China;

    Chongqing Univ Posts & Telecommun, Chongqing Key Lab Signal & Informat Proc, Chongqing, Peoples R China;

    Chongqing Univ Posts & Telecommun, Chongqing Key Lab Signal & Informat Proc, Chongqing, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    People counting; Head detection; Adaboost; CNN;

    机译:人数统计;头部检测;Adaboost;CNN;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号