首页> 外文期刊>Neurocomputing >Multi-target tracking via hierarchical association learning
【24h】

Multi-target tracking via hierarchical association learning

机译:通过分层关联学习进行多目标跟踪

获取原文
获取原文并翻译 | 示例

摘要

To deal with the issue of multi-target tracking, this paper proposes a hierarchical correlation multi-target tracking trajectory generation method. On the basis of target detection results, the AdaBoost algorithm combined with online discriminant analysis apparent model is first utilized to achieve initial moving object tracking trajectories; then, the Hungarian algorithm is utilized to optimize fragmented and discontinuous tracking trajectories to achieve stable and accurate trajectories fragments; finally, energy minimization based intelligent extrapolation algorithm is utilized to achieve final smoother and continuous tracking trajectories. Experimental results on PETS 2009/2010 benchmark and TUD-Stadtmitte video database demonstrate the effectiveness and efficiency of the proposed method. (C) 2016 Elsevier B.V. All rights reserved.
机译:针对多目标跟踪问题,提出了一种层次相关的多目标跟踪轨迹生成方法。在目标检测结果的基础上,首先利用AdaBoost算法结合在线判别分析表观模型来获得初始的运动目标跟踪轨迹。然后,利用匈牙利算法对分段的和不连续的跟踪轨迹进行优化,以达到稳定,准确的轨迹片断。最后,利用基于能量最小化的智能外推算法来实现最终更平滑和连续的跟踪轨迹。在PETS 2009/2010基准和TUD-Stadtmitte视频数据库上的实验结果证明了该方法的有效性和效率。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号