首页> 外文期刊>Neurocomputing >A versatile sparse representation based post-processing method for improving image super-resolution
【24h】

A versatile sparse representation based post-processing method for improving image super-resolution

机译:基于通用稀疏表示的后处理方法,用于提高图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

The objective of this work is single image super-resolution (SR), in which the input is specified by a low resolution image and a consistent higher-resolution image should be returned. We propose a novel post processing procedure named iterative fine-tuning and approximation (IFA) for mainstream SR methods. Internal image statistics are complemented by iteratively fine-tuning and performing linear subspace approximation on the outputs of existing external SR methods, helping to better reconstruct missing details and reduce unwanted artifacts. The primary concept of our method is that it first explores and enhances internal image information by grouping similar image patches and then finds their sparse or low-rank representations by iteratively learning the bases or primary components, thereby enhancing the primary structures and some details of the image. We evaluate the proposed IFA procedure over two standard benchmark datasets and demonstrate that IFA can yield substantial improvements for most existing methods via tweaking their outputs, achieving state-of-the-art performance. (C) 2016 Elsevier B.V. All rights reserved.
机译:这项工作的目标是单图像超分辨率(SR),其中输入由低分辨率图像指定,并且应返回一致的高分辨率图像。我们为主流SR方法提出了一种新颖的后处理程序,称为迭代微调和逼近(IFA)。通过对现有外部SR方法的输出进行迭代微调和执行线性子空间逼近,可以对内部图像统计数据进行补充,从而有助于更好地重建缺失的细节并减少不必要的伪像。我们方法的主要概念是,它首先通过对相似的图像块进行分组来探索和增强内部图像信息,然后通过迭代学习基础或主要成分来找到它们的稀疏或低秩表示,从而增强图像的主要结构和某些细节。图片。我们通过两个标准基准数据集评估了建议的IFA程序,并证明IFA可以通过调整其输出来实现大多数现有方法的实质性改进,从而实现最先进的性能。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号