首页> 外文期刊>Neurocomputing >Modified sparse representation based image super-resolution reconstruction method
【24h】

Modified sparse representation based image super-resolution reconstruction method

机译:基于改进的稀疏表示的图像超分辨率重建方法

获取原文
获取原文并翻译 | 示例

摘要

To improve the geometric structure and texture features of reconstructed images, a novel image super resolution reconstruction (ISR) method based on modified sparse representation, here denoted by MSR_TSR, is discussed in this paper. In this algorithm, edge and texture features of images are synchronously considered, and the over-complete sparse dictionaries of high resolution (HR) and low resolution (LR) image patches, behaving clearer structure features, are learned by feature classification based fast sparse coding (FSC) algorithm. A LR image is first preprocessed by contourlet transform method to denoise unknown noise. Furthermore, four gradient feature images of the LR image preprocessed are extracted. For HR image patches, the edge features are extracted by Canny operator. Then using these edge pixel values as the benchmark to determine whether each image patch's center value is equal to one of edge pixel values, then the edge and texture image patches can be marked out. For gradient image patches, they are first classified by the extreme learning machine (ELM) classifier, thus, corresponding to the class label sequence of LR image patches, the HR image features can also be classified. Furthermore, using FSC algorithm based on the k-means singular value decomposition (K-SVD) model, the edge and texture feature classification dictionaries of HR and LR image patches can be trained. Utilized HR and LR dictionaries trained, a LR image can be reconstructed well. In test, the artificial LR images, namely degraded natural images, are used to testify our ISR method proposed. Utilized the signal noise ratio (SNR) criterion to estimate the quality of reconstructed images and compared with other algorithms of the common K-SVD, FSC and FSC based K-SVD without considering feature classification technique, simulation results show that our method has clear improvement in visual effect and can retain well image edge and texture features.
机译:为了改善重建图像的几何结构和纹理特征,本文讨论了一种基于改进的稀疏表示的图像超分辨率重建(ISR)方法,这里用MSR_TSR表示。在该算法中,同步考虑图像的边缘和纹理特征,并通过基于特征分类的快速稀疏编码学习高分辨率(HR)和低分辨率(LR)图像斑块的稀疏字典,这些字典具有更清晰的结构特征。 (FSC)算法。首先通过轮廓波变换方法对LR图像进行预处理,以去除未知噪声。此外,提取了经过预处理的LR图像的四个梯度特征图像。对于HR图像补丁,边缘特征由Canny运算符提取。然后使用这些边缘像素值作为基准来确定每个图像补丁的中心值是否等于边缘像素值之一,然后可以标记出边缘和纹理图像补丁。对于梯度图像补丁,首先通过极限学习机(ELM)分类器对它们进行分类,因此,对应于LR图像补丁的类别标签序列,也可以对HR图像特征进行分类。此外,使用基于k均值奇异值分解(K-SVD)模型的FSC算法,可以训练HR和LR图像斑块的边缘和纹理特征分类字典。利用经过训练的HR和LR词典,可以很好地重建LR图像。在测试中,人工LR图像(即退化的自然图像)用于证明我们提出的ISR方法。利用信噪比(SNR)准则估计重建图像的质量,并与不考虑特征分类技术的普通K-SVD,FSC和基于FSC的K-SVD的其他算法进行比较,仿真结果表明,该方法具有明显的改进具有视觉效果,并可以保留良好的图像边缘和纹理特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号