首页> 外文期刊>Neurocomputing >Brain MRI image segmentation based on learning local variational Gaussian mixture models
【24h】

Brain MRI image segmentation based on learning local variational Gaussian mixture models

机译:基于学习局部变分高斯混合模型的脑MRI图像分割

获取原文
获取原文并翻译 | 示例

摘要

Measuring the distribution of major brain tissues, including the gray matter, white matter and cerebrospinal fluid (CSF), using magnetic resonance imaging (MRI) has attracted extensive research efforts. Many brain MRI image segmentation methods in the literature are based on the Gaussian mixture model (GMM), which however is not strictly followed due to the intrinsic complex nature of MRI data and may lead to less accurate results. In this paper, we introduce the variational Bayes inference to brain MRI image segmentation, and thus propose a novel segmentation algorithm based on learning a cohort of local variational Gaussian mixture (LVGM) models. By assuming all Gaussian parameters to be random variables, the LVGM model has more flexibility than GMM in characterizing the complexity of brain voxel distributions. To alleviate the impact of bias field, we train each LVGM model on a sampled small data volume and linearly combine the trained models to classify each brain voxel. We also construct a co-registered probabilistic brain atlas for each MRI image to incorporate the prior knowledge about brain anatomy into the segmentation process. The proposed LVGM learning algorithm has been evaluated against five state-of-the-art brain MRI image segmentation methods on both synthetic and clinical data. Our results suggest that the LVGM algorithm can segment brain MRI images more effectively and provide more precise distribution of major brain tissues. (C) 2016 Elsevier B.V. All rights reserved.
机译:使用磁共振成像(MRI)测量主要脑组织的分布,包括灰质,白质和脑脊液(CSF),吸引了广泛的研究工作。文献中的许多脑部MRI图像分割方法都是基于高斯混合模型(GMM),但是由于MRI数据固有的复杂性,因此并未严格遵循该方法,并且可能导致准确度较低。在本文中,我们将变分贝叶斯推理引入脑MRI图像分割中,从而在学习局部变分高斯混合(LVGM)模型队列的基​​础上,提出了一种新颖的分割算法。通过假定所有高斯参数均为随机变量,LVGM模型在表征脑素分布的复杂性方面比GMM具有更大的灵活性。为了减轻偏差场的影响,我们在采样的小数据量上训练每个LVGM模型,并线性组合训练后的模型以对每个脑素进行分类。我们还为每个MRI图像构建了一个共同注册的概率脑图集,以将有关脑解剖的先验知识整合到分割过程中。拟议的LVGM学习算法已针对五种最先进的大脑MRI图像分割方法在合成和临床数据上进行了评估。我们的结果表明,LVGM算法可以更有效地分割大脑MRI图像,并提供主要大脑组织的更精确分布。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第5期|189-197|共9页
  • 作者单位

    Northwestern Polytech Univ, Sch Comp Sci, Shaanxi Key Lab Speech & Image Informat Proc SAII, Xian 710072, Peoples R China;

    Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China;

    Northwestern Polytech Univ, Sch Comp Sci, Shaanxi Key Lab Speech & Image Informat Proc SAII, Xian 710072, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image segmentation; Magnetic resonance imaging; Variational Bayes inference; Probabilistic brain atlas;

    机译:图像分割磁共振成像变贝叶斯推理概率脑图谱;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号