首页> 外文期刊>Neurocomputing >Guaranteed cost neural tracking control for a class of uncertain nonlinear systems using adaptive dynamic programming
【24h】

Guaranteed cost neural tracking control for a class of uncertain nonlinear systems using adaptive dynamic programming

机译:基于自适应动态规划的一类不确定非线性系统的保成本神经跟踪控制。

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an adaptive dynamic programming-based guaranteed cost neural tracking control algorithm for a class of continuous-time matched uncertain nonlinear systems. By introducing an augmented system and employing a modified cost function with a discount factor, the guaranteed cost tracking control problem is transformed into an optimal tracking control problem. Unlike existing optimal tracking control algorithms often requiring the control matrix to be invertible, the developed control algorithm relaxes this restrictive condition under the assumption that the system is controllable. A single critic neural network (NN) is constructed to approximate the solution of the modified Hamilton-Jacobi-Bellman equation corresponding to the nominal augmented error dynamics. Utilizing the newly developed critic NN, the optimal tracking control can be derived without policy iteration. All signals in the closed-loop system are proved to be uniformly ultimately bounded via Lyapunov's direct method. In addition, the developed control scheme is verified to guarantee that the tracking errors converge to an adjustable neighborhood of the origin. Two numerical examples are provided to illustrate the effectiveness and applicability of the developed approach. (C) 2016 Elsevier B.V. All rights reserved.
机译:针对一类连续时间匹配的不确定非线性系统,提出了一种基于自适应动态规划的保证成本神经跟踪控制算法。通过引入增强系统并采用带有折扣因子的修正成本函数,将保证成本跟踪控制问题转化为最优跟踪控制问题。与通常需要控制矩阵可逆的现有最优跟踪控制算法不同,在假定系统是可控制的前提下,开发的控制算法可放松这种限制性条件。构造了单个批评者神经网络(NN)来近似估计与名义上的增加的误差动力学相对应的修改后的Hamilton-Jacobi-Bellman方程的解。利用新开发的注释器NN,无需策略迭代即可获得最佳跟踪控制。通过李雅普诺夫的直接方法,证明闭环系统中的所有信号最终最终均匀一致。此外,对开发的控制方案进行了验证,以确保跟踪误差收敛到原点的可调邻域。提供了两个数值示例来说明所开发方法的有效性和适用性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号