首页> 外文期刊>Neurocomputing >A Bayesian approach for initialization of weights in backpropagation neural net with application to character recognition
【24h】

A Bayesian approach for initialization of weights in backpropagation neural net with application to character recognition

机译:反向传播神经网络权重初始化的贝叶斯方法及其在字符识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

Convergence rate of training algorithms for neural networks is heavily affected by initialization of weights. In this paper, an original algorithm for initialization of weights in backpropagation neural net is presented with application to character recognition. The initialization method is mainly based on a customization of the Kalman filter, translating it into Bayesian statistics terms. A metrological approach is used in this context considering weights as measurements modeled by mutually dependent normal random variables. The algorithm performance is demonstrated by reporting and discussing results of simulation trials. Results are compared with random weights initialization and other methods. The proposed method shows an improved convergence rate for the backpropagation training algorithm. (C) 2016 Elsevler B.V. All rights reserved.
机译:神经网络训练算法的收敛速度受权重初始化的严重影响。本文提出了一种在反向传播神经网络中权重初始化的原始算法,并将其应用于字符识别。初始化方法主要基于Kalman过滤器的定制,将其转换为贝叶斯统计项。在这种情况下,采用计量方法,将权重视为由相互依赖的正常随机变量建模的度量。通过报告和讨论仿真试验的结果来证明算法的性能。将结果与随机权重初始化和其他方法进行比较。所提出的方法对于反向传播训练算法显示出提高的收敛速度。 (C)2016 Elsevler B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号