首页> 外文期刊>Neurocomputing >Scaffolding type-2 classifier for incremental learning under concept drifts
【24h】

Scaffolding type-2 classifier for incremental learning under concept drifts

机译:脚手架2类分类器用于概念漂移下的增量学习

获取原文
获取原文并翻译 | 示例

摘要

The proposal of a meta-cognitive learning machine that embodies the three pillars of human learning: what-to-learn, how-to-learn, and when-to-learn, has enriched the landscape of evolving systems. The majority of meta-cognitive learning machines in the literature have not, however, characterized a plug and-play working principle, and thus require supplementary learning modules to be pre-or post-processed. In addition, they still rely on the type-1 neuron, which has problems of uncertainty. This paper proposes the Scaffolding Type-2 Classifier (ST2Class). ST2Class is a novel meta-cognitive scaffolding classifier that operates completely in local and incremental learning modes. It is built upon a multi variable interval type-2 Fuzzy Neural Network (FNN) which is driven by multivariate Gaussian function in the hidden layer and the non-linear wavelet polynomial in the output layer. The what-to-learn module is created by virtue of a novel active learning scenario termed the uncertainty measure; the how-to-learn module is based on the renowned Schema and Scaffolding theories; and the when-to-learn module uses a standard sample reserved strategy. The viability of ST2Class is numerically benchmarked against state-of-the-art classifiers in 12 data streams, and is statistically validated by thorough statistical tests, in which it achieves high accuracy while retaining low complexity. (C) 2016 Elsevier B.V. All rights reserved.
机译:元认知学习机的提案体现了人类学习的三个支柱:“学习什么”,“学习方法”和“何时学习”,丰富了不断发展的系统的面貌。然而,文献中的大多数元认知学习机都没有以即插即用的工作原理为特征,因此需要对补充学习模块进行预处理或后处理。此外,他们仍然依赖于具有不确定性问题的1型神经元。本文提出了脚手架2类分类器(ST2Class)。 ST2Class是一种新颖的元认知支架分类器,可完全在本地和增量学习模式下运行。它建立在多变量区间2型模糊神经网络(FNN)的基础上,该神经网络由隐藏层的多元高斯函数和输出层的非线性小波多项式驱动。学习模块是根据一种称为不确定性度量的新型主动学习方案而创建的。学习模块基于著名的模式和脚手架理论;学习时间模块使用标准的样本保留策略。 ST2Class的生存能力在12个数据流中针对最先进的分类器进行了数字基准测试,并通过全面的统计测试进行了统计验证,从而在保持较低复杂性的同时实现了高精度。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第26期|304-329|共26页
  • 作者单位

    La Trobe Univ, Dept Comp Sci & IT, Melbourne, Vic 3083, Australia;

    Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst, Broadway, NSW 2007, Australia;

    Johannes Kepler Univ Linz, Dept Knowledge Based Math Syst, A-4040 Linz, Austria;

    Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst, Broadway, NSW 2007, Australia;

    Univ New S Wales, Sch Engn & Math Sci, Canberra, ACT 2200, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fuzzy neural network; Neural network; Evolving system; Concept drift; Incremental learning;

    机译:模糊神经网络;神经网络;演化系统;概念漂移;增量学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号