首页> 外文期刊>Neurocomputing >Plant miRNA function prediction based on functional similarity network and transductive multi-label classification algorithm
【24h】

Plant miRNA function prediction based on functional similarity network and transductive multi-label classification algorithm

机译:基于功能相似网络和转导多标签分类算法的植物miRNA功能预测

获取原文
获取原文并翻译 | 示例

摘要

Plant miRNAs play critical roles in the response to abiotic and biotic stress. The advancement in the number of plant miRNA functions lags far behind that of plant miRNAs. In this paper, a method to predict the functions of plant miRNAs is proposed. The functional similarity between each pair of miRNAs is inferred based on a weighted protein-protein interaction network (WPPIN) and graph-theoretic properties. A miRNA functional similarity network (MFSN) is constructed by a simple but robust rank-based approach. Transductive multi-label classification (TRAM) is applied to the MFSN. The experimental results demonstrate that our prediction approach obtains high effectiveness in Arabidopsis thaliana. It can also be applied to other plant species when protein-protein interaction networks of various organisms are available. (C) 2015 Elsevier B.V. All rights reserved.
机译:植物miRNA在对非生物和生物胁迫的响应中起关键作用。植物miRNA功能数量的进步远远落后于植物miRNA的数量。本文提出了一种预测植物miRNA功能的方法。基于加权的蛋白质-蛋白质相互作用网络(WPPIN)和图形理论特性,可以推断每对miRNA之间的功能相似性。 miRNA功能相似性网络(MFSN)通过简单但稳健的基于等级的方法构建。感应式多标签分类(TRAM)被应用于MFSN。实验结果表明,我们的预测方法在拟南芥中获得了很高的效果。当各种生物的蛋白质-蛋白质相互作用网络可用时,它也可以应用于其他植物物种。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第29期|283-289|共7页
  • 作者单位

    Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116023, Peoples R China;

    Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116023, Peoples R China;

    Dalian Univ Technol, Sch Life Sci & Biotechnol, Dalian 116023, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    MiRNA functional similarity; TRAM; Protein-protein interaction network; Prediction;

    机译:MiRNA功能相似性;TRAM;蛋白-蛋白质相互作用网络;预测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号