首页> 外文期刊>Neurocomputing >An empirical comparison of latent sematic models for applications in industry
【24h】

An empirical comparison of latent sematic models for applications in industry

机译:潜在语义模型在工业应用中的实证比较

获取原文
获取原文并翻译 | 示例

摘要

In recent years, topic models have been gaining popularity to perform classification of text from several web sources (from social networks to digital media). However, after working for many years in the web text mining area we have notice that assessing the quality of topics discovered is still an open problem, quite hard to solve. In this paper, we evaluated four latent semantic models using two metrics: coherence and interpretability which are the most used. We show how these pure mathematical metrics fall short to asses topics quality. Experiments were performed over a dataset of 21,863 text reclamation. (C) 2015 Elsevier B.V. All rights reserved.
机译:近年来,主题模型已越来越受欢迎,可以从几个Web来源(从社交网络到数字媒体)对文本进行分类。但是,在网络文本挖掘领域工作了多年之后,我们注意到评估发现的主题的质量仍然是一个开放的问题,很难解决。在本文中,我们使用两个度量标准评估了四个潜在语义模型:最常用的一致性和可解释性。我们将说明这些纯数学指标如何不足以评估主题的质量。在21,863文本回收的数据集上进行了实验。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号