首页> 外文期刊>Neurocomputing >An improved density peaks-based clustering method for social circle discovery in social networks
【24h】

An improved density peaks-based clustering method for social circle discovery in social networks

机译:一种改进的基于密度峰值的社交网络社交圈发现聚类方法

获取原文
获取原文并翻译 | 示例

摘要

With the development of Internet, social networks have become important platforms which allow users to follow streams of posts generated by their friends and acquaintances. Through mining a collection of nodes with similarities, community detection can make us understand the characteristics of complex network deeply. Therefore, community detection has attracted increasing attention in recent years. Since the problem of discovering social circles is posed as a community detecting problem, hence, in this paper, targeted at on-line social networks, we investigate how to exploit user's profile and topological structure information in social circle discovery. Firstly, according to directionality of linkages, we put forward in link Salton metric and out-link Salton metric to measure user's topological structure. Then we propose an improved density peaks-based clustering method and deploy it to discover social circles with overlap on account of user's profile- and topological structure-based features. Experiments on real-world dataset demonstrate the effectiveness of the proposed framework. Further experiments are conducted to understand the importance of different parameters and different features in social circle discovery. (C) 2015 Elsevier B.V. All rights reserved.
机译:随着Internet的发展,社交网络已成为重要的平台,允许用户关注其朋友和熟人生成的帖子流。通过挖掘具有相似性的节点集合,社区检测可以使我们深入了解复杂网络的特征。因此,社区检测近年来引起了越来越多的关注。由于发现社交圈的问题是作为社区检测问题提出的,因此,本文针对在线社交网络,研究了如何在社交圈发现中利用用户的个人资料和拓扑结构信息。首先,根据链接的方向性,提出了链接Salton度量和链接Salton度量来度量用户的拓扑结构。然后,我们提出了一种改进的基于密度峰值的聚类方法,并将其部署用于发现基于用户个人资料和基于拓扑结构的特征重叠的社交圈。在真实数据集上的实验证明了所提出框架的有效性。进行进一步的实验以了解社交圈发现中不同参数和不同特征的重要性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第29期|219-227|共9页
  • 作者单位

    Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China|Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Peoples R China;

    Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China|Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Peoples R China;

    Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China|Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Peoples R China|Jilin Univ, Coll Math, Changchun 130012, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Discovering overlapping social circles; Improved density peaks-based clustering method; In-link Salton metric; Out-link Salton metric; Social networks;

    机译:发现重叠的社交圈;改进的基于密度峰值的聚类方法;链接内Salton度量;链接外Salton度量;社交网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号