首页> 外文期刊>Neurocomputing >A fast binary encoding mechanism for approximate nearest neighbor search
【24h】

A fast binary encoding mechanism for approximate nearest neighbor search

机译:用于近似最近邻居搜索的快速二进制编码机制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel approach which can map high-dimensional, real-valued data into low-dimensional, binary vectors is proposed to achieve fast approximate nearest neighbor (ANN) search. In our paper, the binary codes are required to preserve the relative similarity, which makes the Hamming distances of data pairs approximate their Euclidean distances in ANN search. Under such constraint, the distribution adaptive binary labels are obtained through a lookup-based mechanism. The perpendicular bisector planes located between two kinds of data whose binary labels are different on only one specific bit are considered as weak hash functions. As just two kinds of data are taken into consideration during generation of the weak hash functions, the final strong hash functions are formed by combining the weak ones through boosting scheme to map all kinds of data into binary codes effectively. Experimental results show that our algorithm can encode the out of samples efficiently, and the performances of our method are superior to many state-of-the-art methods. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文提出了一种可以将高维,实值数据映射为低维,二进制向量的新方法,以实现快速近似的最近邻(ANN)搜索。在我们的论文中,需要使用二进制代码来保持相对相似性,这使得数据对的汉明距离在ANN搜索中近似于其欧几里得距离。在这种约束下,通过基于查找的机制获得分布自适应二进制标签。位于二进制数据仅在一个特定位上不同的两种数据之间的垂直平分线平面被视为弱哈希函数。由于在弱散列函数的生成过程中仅考虑两种数据,因此最终的强散列函数是通过使用Boosting方案组合弱的散列函数以将各种数据有效地映射为二进制代码而形成的。实验结果表明,我们的算法可以有效地对样本进行编码,并且该方法的性能优于许多最新方法。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第20期|112-122|共11页
  • 作者单位

    Jilin Univ, Sch Comp Sci & Technol, Changchun 130012, Peoples R China|Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Peoples R China;

    Jilin Univ, Sch Comp Sci & Technol, Changchun 130012, Peoples R China;

    Jilin Univ, Sch Comp Sci & Technol, Changchun 130012, Peoples R China|Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Peoples R China;

    Jilin Univ, Sch Comp Sci & Technol, Changchun 130012, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hashing algorithm; Binary codes; Approximate nearest neighbor search; Image retrieval;

    机译:哈希算法;二进制代码;近似最近邻搜索;图像检索;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号