首页> 外文期刊>Neurocomputing >Novel delay-dependent exponential stability criteria for neutral-type neural networks with non-differentiable time-varying discrete and neutral delays
【24h】

Novel delay-dependent exponential stability criteria for neutral-type neural networks with non-differentiable time-varying discrete and neutral delays

机译:具有不可微时变离散和中立时滞的中立型神经网络的新型依赖于时滞的指数稳定性准则

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider exponential stability problem for neutral-type neural networks with both interval time-varying state and neutral-type delays under more generalized activation functions. We note that discrete and neutral delays are both time-varying where the discrete delay is not necessarily differentiable and the information on derivative of neutral delay is not required. To the best of our knowledge, this is the first study under this conditions on discrete and neutral delays. Furthermore, we consider the case when there are interconnections between past state derivatives, namely, neural networks contain activation function of past state derivatives. Based on the Lyapunov-Krasovskii functional, we derive new delay-dependent exponential stability criteria in terms of linear matrix inequalities (LMIs) which can be solved by various available algorithms. Finally, numerical examples are given to illustrate the effectiveness of theoretical results and to show less conservativeness than some existing results in the literature. (C) 2015 Elsevier B.V. All rights reserved.
机译:在本文中,我们考虑具有更普遍的激活函数的具有间隔时变状态和中立型时滞的中立型神经网络的指数稳定性问题。我们注意到离散和中性延迟都是随时间变化的,其中离散延迟不一定是可微的,并且不需要有关中性延迟的导数的信息。据我们所知,这是在这种情况下对离散和中立延迟的首次研究。此外,我们考虑过去状态导数之间存在互连的情况,即神经网络包含过去状态导数的激活函数。基于Lyapunov-Krasovskii泛函,我们根据线性矩阵不等式(LMI)导出了新的依赖于延迟的指数稳定性标准,可以通过各种可用算法来求解。最后,通过数值例子说明了理论结果的有效性,并且与文献中已有的结果相比,保守性有所降低。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号