首页> 外文期刊>Neurocomputing >Designing efficient discriminant functions for multi-category classification using evolutionary methods
【24h】

Designing efficient discriminant functions for multi-category classification using evolutionary methods

机译:使用进化方法设计用于多类别分类的有效判别函数

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose two approaches to obtain accurate classifiers for dealing with multi-category classification problem. Our work is based on one-vs-all strategy where we try to decrease conflicting situations. In the first phase of both approaches we employ Genetic Programming to find populations of the best discriminant functions (one population for each class). In addition to traditional function set, like {+, -, *, /}, we utilize other special functions in our binary trees. We also use both negative and positive constants in the terminal nodes of the trees. In the second phase, we employ Ant Colony in our first approach, called GP-Ant, and Genetic Algorithm in the second one, called GP-GA, to find the best combination of discriminant functions found in the previous phase. We also provide a special modification box to modify the decision of our final integrated classifiers, when conflicting situations happen. To cope with conflicting situations, we also utilize an appropriate fitness function in the second phase. We compare our works with both state of the art and basic multi-category classification methods on eight well-known publicly available data sets. Our experimental results show that our methods are statistically significantly better than all the Other classification methods used. (C) 2015 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了两种方法来获得用于处理多类别分类问题的准确分类器。我们的工作基于“一对多”策略,在该策略中我们试图减少冲突情况。在这两种方法的第一阶段,我们都采用遗传编程来找出具有最佳判别功能的群体(每个类别一个群体)。除了传统的功能集(例如{+,-,*,/})之外,我们还在二进制树中使用其他特殊功能。我们还在树的终端节点中同时使用负常数和正常数。在第二阶段中,我们在第一种方法中使用了蚁群算法,称为GP-Ant,在第二种方法中采用了遗传算法,称为GP-GA,以找到前一阶段中判别函数的最佳组合。当发生冲突的情况时,我们还提供了一个特殊的修改框来修改最终集成分类器的决策。为了应对矛盾的情况,我们在第二阶段还利用了适当的适应度函数。我们将我们的作品与最先进的技术和基本的多类别分类方法进行了比较,并采用了八种众所周知的公开数据集。我们的实验结果表明,我们的方法在统计学上明显优于使用的所有其他分类方法。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号