首页> 外文期刊>Neurocomputing >The recovery of sparse initial state based on compressed sensing for discrete-time linear system
【24h】

The recovery of sparse initial state based on compressed sensing for discrete-time linear system

机译:基于压缩感知的离散线性系统稀疏初始状态的恢复

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the recovery of sparse initial state for deterministic discrete-time linear time-invariant systems based on the compressed sensing theory. A class of deterministic linear systems with the global observation matrices satisfying the restricted isometry property (RIP) is characterized. Sufficient conditions on the measurement time instants that guarantee the global observation matrix to be a RIP matrix are obtained. With respect to the recovery of the sparse initial state of a high-dimensional linear system, it is worth mentioning that the number of measurements can be significantly decreased in terms of compressed sensing theory. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文考虑基于压缩感知理论的确定性离散时间线性时不变系统的稀疏初始状态的恢复。一类确定性线性系统的全局观测矩阵满足受限等轴测特性(RIP)。获得了确保全局观测矩阵成为RIP矩阵的测量时刻的充分条件。关于高维线性系统的稀疏初始状态的恢复,值得一提的是,根据压缩传感理论,可以显着减少测量次数。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号